Differencing of time-lapse survey data using a projection onto convex sets algorithm
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Utilizing projection onto convex sets (POCS) Algorithm to The procedure is summarized as below a) Subsurface model used for baseline survey. a)
obtain a reliable difference section from ireegulary sample Subsurface model used for monitor survey.
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The observed subtracted section is equal to correspondent to baseline, monitor and difference data,
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Synthetic example

Projection onto convex sets (POCS)

| | | | a) Original difference data. b) Difference data with missing
The POCS (Abma and Kabir, 2003) algorithm is a Fourier traces. c) Reconstructed difference data. d-f) are the f-k
based data reconstruction method for the signals with a spectra of a-c, respectively.
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by implementing it to recover the baseline survey. The

POCS algorithm for baseline survey reconstruction can be - el .l

summarized as . % | a) Difference data with 70% randomly missing traces. b)
Initialization | I ? Reconstructed difference data. c) The reconstruction error
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where F and F" are the forward and inverse Fourier
transforms and % is the thresholding function which
enforces samples with absolute values below the threshold
values to be zero. Notice that the term | — T as an operator
which only keeps the values of the missing spatial samples.
The thresholding function performs as follow

d) Normalized wavenumber Kx e) Normalized wavenumber Kx f) Normalized wavenumber Kx
'0.'4 '0.'2 CI) 012 014 '0.'4 '0.'2 CI) 0'.2 014 '0.'4 '0.'2 CI) 012 014

Time (s)

=
—_—

(.1

o
—_—

o
i
o
i

Normalized frequency
Normalized frequency
Normalized frequency

r(D) _ {D(I) ‘D( )‘ > )\k; 5) 0.3—1'1!““ 0.3 03—'.‘¥I~
0 [DU)| < Ak g y Acknowledament
Where D represent the Fourier representation of of the data \cknowledgment
D. It Is recommended to choose higher threshold values at 08 - - We would like to thank the sponsors of CREWES for

the start iterations and decrease its value for the last ones.

funding this research.
2 5uE8 UNIVERSITY OF

.(S,.
c?fég ,10@}

ﬁ CREWES WWW.Crewes.org CA [GARY



