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Why study the instantaneous frequency?

Since  the paper of Taner et al (1979) this
attribute has been used to interpret seismic
data and relate the interpretation of meaningful
geological signatures.

Phase of the rectified trace parameter as an aid 
to seismic interpretation ( B. Stebens, R. 
Parsons, D. Terral, R.T. Baumel and M. Yedlin)
6 patents granted to Conoco Inc. in: Australia, 
Belgium-France-Netherlands, Canada, West
Germany, Great Britain, U.S.A  [Feb. 1988]. 
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1. Classical Instantaneous Frequency  

Inspiration for the analytic signal:
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Now define (by analogy):
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These are:
1. Numerator problems – non-physical  results
2. Denominator problems – can lead to instability

Need to fix these!



2. Fomel’s Improvement (2007)
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Stabilize this using Tikhonov regularization:
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3. Gabor, Cohen and Stockwell

Dennis Gabor proposed (1946) proposed the 
expansion of a wave in terms of “Gaussian 
wave packets”. The mathematics for the 
continuous Gabor transform emerged quickly.

=The discrete Gabor transform 
emerged in the 1980s due 
to Bastiaans.



The Gabor Idea

• Dennis Gabor proposed (1946) proposed the 
expansion of a wave in terms of “Gaussian wave 
packets”.  This is effectively a “local” Fourier 
transform.

=



The Gabor Idea

A seismic signal

A Gaussian slice or 
wave packet.

A shifted Gaussian

Multiply



The Gabor Idea

A suite of 
Gaussian slices

A seismic signal

Remarkably, the suite of Gaussian slices can be designed such that 
they sum to recreate the original signal with high fidelity.
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The Gabor Idea
The inverse Gabor transform done two ways
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The Continuous Gabor Transform
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Following Cohen’s theorem (1995) eqns (7.52-7.54) 
[first moment or power centroid]:
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But the variance of this mean tends to infinity!
There is clearly a problem with the concept
of instantaneous frequency!

We can compute the local frequency by using 
the Stockwell transform instead of the
Gabor transform in the centroid calculation.

The Stockwell transform is given by
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4. Data Examples

We will now apply the foregoing theory to 
four data examples:

1. Chirp: 10 – 100 Hz;
2. Two sine waves: 40 Hz + 60 Hz;
3. Nonstationary seismic trace;
4. Quarry blast. 
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1. There is instability in the instantaneous frequency –
it can go negative or have a value greater than 
the Nyquist frequency;

2. Cohen’s theorem provides an intuitive connection
between instantaneous frequency and the Gabor
spectrum;

3. We need to find an objective means of choosing the
Gaussian window;

4. We need to find an objective means for choosing
the optimum amount of regularization in the Fomel
method.   

5. Conclusions


