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Summary algorithm by Ma and Margrave (2005). In the following
sections, we will demonstrate the adaptive Gabor wavefield

Wavefield extrapolation by spatially variable phase shiftir- extrapolation algorithm and give some imaging results tegka

rently a migration tool of importance. In this paper, we prats by these algorithms.

a new prestack seismic migration algorithm using the Gabor

transform _With application to the Marmogs_i acoustic qatas‘i‘aaborwavefield extrapolation theory

The imaging results show a very promising depth imaging

algorithm, which is competitive with the best depth imaging

algorithms. The Gabor depth imaging algorithm approxirmatd@he Gabor transform

generalized phase shift plus interpolation (GPSPI) walefie ) o ) )

extrapolation using the Gabor, or windowed Fourier, tramsf The continuous Gabor transform pair is written as (follogvin

to localize the wavefield. The key to an efficient algorithm idargrave and Lamoureux (2001))

to develop an adaptive windowing scheme that only localizes

the wavefield as required by the lateral velocity variation.

If there is no lateral velocity variation then no localizati

(windowing) is required. When velocity varies rapidly, the Vgs(zr, kr) = / s(zr)g(zr — a7) exp(—izrkr)der (1)

many, relatively narrow, windows are required for accurate R

wavefield extrapolation. We present the details of an adapti

windowing method that has a controlled phase error. Prograﬁnd

have been coded with the adaptive windowing algorithm, twhic

substantially reduces the computational burden in Wa‘dafiel( = Vi s, kr)y(zr — o) (izrkr)dkrde),

extrapolation when compared to the full GPSPI integral. W&\""/ = [, Vos\@T FT)YT = &) exXplrir JART T,

will illustrate the performance of this algorithm with imes 2

from prestack depth migration of the Marmousi dataset. wherezr denotes transverse coordinates (exg:, =  in 1D,

xr = (z,y) in 2D), s(zr) is the input signalV,s(z', kr) is
Introduction the Gabor spectrum of(zr), g(zr — z7) is an analysis win-
o . . dowing function with its center at/, v(zr — x7) is a synthesis
Migration with Gazdag (1978) phase shift method can onjyindowing function, andcr is the coordinate in the wavenum-
accommodate constant lateral velocity in any depth stefitwhper domain corresponding ter, R denotes real domain for in-

is unrealistic for many practical applications, where &l tegrations. Equation (1) is in fact a Fourier transform ofia-w
structures are often heterogeneous with strong laterakcitgl gowed version of signal(zr).

fluctuations. To address lateral velocity variations ingghahift ) ) .
wavefield extrapolations, phase shift plus interpolatiBispl) Eduation 1is used to calculate the Gabor spectrusf(ef); in
was proposed by Gazdag and Sguazzero (1984) using a sél'8f" to recover the original signalzr) from its Gabor spec-
reference (laterally homogeneous) velocities to caleute UM Vs(zr, kr), analysis and synthesis windows must satisfy
corresponding extrapolated wavefields; the final extrapdla

wavefields are obtained by interpolating with specific vizsles

corresponding to certain lateral positions. Stoffa et 2290) /Rg(”)%”)d” =1 ®)
gave an alternative extrapolation algorithm, split-stequrier
migration, dealing with lateral velocity variation whilee&ping
the advantages of the phase-shift method, i.e., accuracgféin
ciency. Other phase-shift wavefield extrapolation metsdsh
as ‘phase-screen propagator’ (Wu and Huang, 1992; Robtert
al., 1997; Rousseau and de Hoop, 2001; Jin et al., 2002)
provide for accurate imaging with abrupt velocity variatsoin
such geological settings as salt-dome environments. Ideegr
and Ferguson (1999) used a nonstationary phase shift (NSE’%{}
method and a generalized phase shift plus interpolatiorS(@&pP
to improve migration results, where wavefield extrapolagio
were done totally in the Fourier domain using arbitrary eéihp
variations. Our wavefield extrapolation method follows divd  Gabor Wavefield extrapolation

Wu (1998) and approximates GPSPI with a Gabor extrapolator.

We also have control over speed and accuracy of Gabor waVée generalized phase shift plus interpolation (GPSPI)ewav
field extrapolations with the help of the adaptive windowingleld extrapolation is formulated as (Margrave and Ferguson

(Margrave and Lamoureux, 2001), which is called a partitbn
unity (POU). The analysis windows could be any kind of mathe-
matical function. However, in our wavefield extrapolatiqph-

ations, we choose functions with a localization propértyhis

, we may represent our wavefield extrapolator depending o

local velocities with a small error. Gaussian windows aredjo
didates, and we have chosen them for this paper. We also
ose the synthesis window as unity, that is, we do notilceal
wavefields in the synthesis process.
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1999; Margrave et al., 2004) Equation (12) specifies our Gabor wavefield extrapolator.

Yp(rr, 2 + Az,w) = / P(kr, z,w)W (kr,z7,A2)  Adaptive Gabor wavefield extrapolation
R

wexp (—tkrar)dkr, @ analysis windows in Gabor wavefield extrapolations are un

formly distributed along the lateral dimensions, we witl host
circumstances, have excessive redundancy in computatiat.
R is, the algorithm without adaptive windowing usually cdétes
W(kr,zr, Az) = exp (ik. (v(z1)) Az), (5 more windowed Fourier transforms than it requires. For exam
ple, we know that for homogeneous media, we only need one
window instead of many, where the GPSPI method degenerates
into Gazdag (1978) Fourier migration (phase shift with ¢ans

where

w? 1.2 w? 2
ko (v(@r)) = Pen "kt wen >k (6) velocity) in laterally homogeneous media. If the laterdbe#ty
iy k2 — 2 k2, structures in a slab are not extremely inhomogeneous, we can
vier)?  vier) use fewer windowed Fourier transforms in wavefield extrapol

tions than we do in rapidly varying velocity models. Adaptiv

Az s the step size of extrapolation invertical) directionw IS iy qqwing algorithms are suggested to deal with differgpes
temporal_ freq_uency and(zr) d_enotes lateral velocities al_ongof lateral velocity structures met in Gabor wavefield extlap
a slab with thicknesa\z. Equation (4) extrapolates Waveﬂeld%c)ns

at depthz down to depth: + Az in the frequency-wavenumber
domain. At this time, we use the Ma and Margrave (2005) algorithm,
which uses phase errors as criteria to determine the nunfber o

To develop a Gabor approximation to equation (4), we 'ntmduwindows needed in wavefield extrapolations. i.e.,

the approximation

W (kr,or, Az) & Y Q(2r)S;i(xr)W;(kr,Az), () ¢ = |arg (Qj(wT)W(kT,wT,Az)) -

JEL
S =1, ®) arg (Qj (@r) Y Si(@r)u(@r)W;(kr, AZ))
jez keZ oo
J k€L, (13)

where Q; is a family of windows forming a POU (refer to

equation (8), the discrete form of POUj;(xr) is a split- \yheree; is the total phase error within thg" window ©Q;,

step Fourier operator for phase correction in the Gabor intag W(kT, 2, Az) and its approximatioWj(kT, Az) have been

W;(kr, Az) is a wavefield extrapolator with reference veloCiyindowed by();, the reference velocity used to calculate the
tiesv;, which are Gabor extrapolatobV; (kr, Az) equals to thg'™ reference ve-
locity vj; || - ||o denotes thd. o norm.

Sj(xr) = exp (iwAz < LI l)), 9)
v(zr) v Examples

Wik, Az) = exp (ik=(v;)Az) 10 The Marmousi synthetic data set has been widely used as a
and benchmark for testing depth imaging algorithms. The oggin
dimensions of the Marmousi velocity section are 10,000 m in
width and 3,000 m in depth. The portion we try to image is
L Je & (@r)v(er)der (11) shown in Figure 1 (c) (2000-9000 m and 3000 m in depth). In
! Jz i (xr)der the Marmousi synthetic data set, we have 240 shot records, ea
of which has 96 traces, with time extending to about 2.9 sg€on

respectively. Notice that in equation (1@), is still calculated For each shot record, there are 241 extrapolation stepssteth
with equation (6), using the reference velocitycorresponding sjzeA» — 12.5 meters.

to a specific windov§2; (see equation (11)) instead efzr).

] ) ] ) . Before discussing the imaging results, we explain the patam
Using approximate wavefield extrapolator (7) in (4) gives  ysed in the adaptive windowing (or partitioning) algorithiie
call this parameter ‘threshold’, which is used to set theshold
in terms of the relative phase error. For example, when thares
Yp(zr,z + Az,w) = ZQj(xT)S].(xT) / (kr,z,w) Old=25%, we mean that 25% of the absolute phase related to
ez R an exact velocity is set as a tolerance value for phase dissrs
R ) tween the phases corresponding to a reference velocitd fose
- Wi(kr, Az) exp (—ikrar)dkr. extrapolation) and the exact velocity when patitioningltteral
(12) velocity structures in each depth. To show how this windgwin



Gabor depth imaging

Adaptive Windowing With P

(relative phase error threshold =35%, windo uency=30 Hz)
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(a) Partitioning the velocity slice using a phase errorghméd
of 35% (16 windows created)
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(b) Partitioning the velocity slice using a phase errorshrd
of 25% (26 windows created)

Soco 3000 2000 000 6000 7000 8000 5600
O >

(c) Slice (the red line) adapted from the Marmousi velocity
(colored) model
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(d) Marmousi reference velocity section created by the adap
tive windowing algorithm using a phase error threshold of
35%
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(e) Marmousi reference velocity section created by the adap
tive windowing algorithm using a phase error threshold of
25%

Figure 1: Adaptively windowing the Marmousi velocity sectifor the
Gabor depth imaging

algorithm works, we give two examples using different thres
olds (25% and 35%) and the windows created by the adaptive
windowing algorithm with phase error criterion on a velgcit
slice (the red line across Figure 1 (c) in depth around 1500 m)
from the Marmousi velocity section (See Figure 1 (a) and. (b))
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(b) Gabor imaging result using a phase error threshold of 35%
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(c) Gaborimaging result using a phase error threshold of 25%

Figure 2: Imaging Marmousi velocity model using the Gabansform

To see how the adaptive windowing algorithm works in the
whole Marmousi velocity section, in Figure 1 (d) and (e), we
show the reference velocity sections resolved by the agapti
windowing algorithm in the Gabor imaging process with two
different phase error thresholds. In Figure 1 (d), a reéagifiase
error threshold of 35% has been used. We can see the reference
velocity section is very coarse compared to the exact Magnou
velocity model (see Figurel (c)). Though the split-stepriesu
corrections (Stoffa et al., 1990) can be applied to minirpizase
errors in the Gabor wavefield extrapolation, we are not able t
make calculations accurate enough as we carry on spatiaépha
shift in depths if the difference between exact and refezerme
locities is too large. When we use a relative phase errostiuiel

of 25%, we find that the reference velocity section seen by the
phase error windowing algorithm fits the exact velocity mode
quite well (see Figure 1 (e) and (c)). As a result, we may be
able to imaging the Marmousi velocity structures with highe
accuracy. However, as we can see from Figure 1 (a) and (b),
when the phase error threshold is set smaller (meaning noere a
curate spatial phase shift), the number of windows useden th
Gabor depth imaging increases. More windows results inlowe
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imaging efficiency due to more Fourier transforms used in the

Gabor wavefield extrapolation. With limitation from comimgt

facilities, we have to trade off between imaging efficienaog a

accuracy. Our Gabor imaging algorithm gives us the freedgbferences
of choosing between them. In this paper, we use a threshold of

25% as a fairly good phase error threshold to create an acurat

imaging result of the Marmousi velocity model. Gazdag, J., and Sguazzero, P., 1984, Migration of seisntic da

To show how these phase error thresholds influence the imagin by phase shift plus interpolation: Geophysi4$, no. 2, 124—
results, we give two imaging examples of the Marmousi véjoci 131

model shown in Figure 2 (b) and (c); the accurate Marmousi . L . .
velocity is shown in Figure 2 (a) for comparison. azdag, J., 1978, Wave equation migration with the phase-sh

methd: Geophysic€l3, no. 7, 1342-1351.
The results shown in Figure 2 (b) and (c) verify the analysis
about the imaging accuracy given before this section. Weean Jin, S., and Wu, R., 1998, Depth migration using the windowed
that in Figure 2 (b), the Marmousi velocity section has beith a generalized screen propagators: SEG Expanded Abstracts,
equately imaged (though roughly). In the upper part, we lrave 17, 1843.
more clear image than in the lower part of the Marmousi model. o )
However, from the middle to the bottom, some parts of the véin, S., Xu, S., and Mosher, C. C., 2002, Migration with a loca
locity section are not properly imaged. For example, théoreg ~ Phase screen propagator: SEG Expanded Absti2L;t$164.

of the anticline enclosing the target reservoir (in deptiowdb

2500 m with distance from 5800 m to 7500 m) is not clearly'® Y., _and Margrave, G. F., 200.5’ A new adaptive windowing
imaged in Figure 2 (b). Figure 2 (c) shows us) a much betteralgonthm for the Gabor depth imaging: CREWES Research

imaging result, we can see both the shallow and deep patig of t Report,17.

Marmousi velocity section are very clearly imaged. Espégia Margrave, G. F., and Ferguson, R. J., 1999, Wavefield extrap-

the targgt re_servoir area is imaged in a great details comapar olation by nonstationary phase shift: Geophyss, no. 4
the one in Figure 2 (b). 1067-1078. ‘ Y

The running time for the depth imaging result in Figure 2 &) i
about 34 hours on a PC, while the imaging result in Figure 2 (4argrave, G. F., and Lamoureux, M. P., 2001, Gabor deconvo-
is obtained on the same PC using about 104 hours. Even thidution: CREWES Research Repol8.

running time (104 hours) may not be appealing, we still haﬁ .

L - - argrave, G. F., Al-Saleh, S. M., Geiger, H. D., and Lamoyreu
opportunities to improve the efficiency. Neverthe_less, aecha Mg P 2‘004 'ILhe FOCI él orithm fgr séismicvde th mi raiion'
new imaging method that can be used to approximate the uexaCtCIIQE.\’NES I‘?esearch Rer?olﬁ P 9 :

GPSPIlimaging approach, which takes much longer computatio

time than this one does (examples not shown here). Roberts, P., Huang, L., Burch, C., Fehler, M., and Hildetiran
S., 1997, Prestack depth migration for complex 2D structure

Conclusions using phase-screen propagators: SEG Expanded Abstracts,
16, 1282.

The Gabor extrapolator is a very promising imaging tool &iss . .

mic depth migration. The Gabor imaging results have shovﬁﬂlrjlzsvevﬁﬁ't#é si:rﬁa?(;;%?gl’izhgdyéérigalélgf)?grenllnnsgir??sgjtlrmag_

that we can get accurate depth images for complicated veloc-media_ Geophysic§6, no. 5, 1551-1568

ity structures such as the Marmousi velocity model, which is ) B '

solid basis to carry out further research and exploratiothef giofta p. L., Fokkema, J. T., de Luna Freire, R. M., and

new imaging algorithm. The Gabor extrapolator can be usedyegsinger, W. P., 1990, Split-step Fourier migration: Geo-

to image velocity structures as accurately as we may require physics 55, 410-421.

Computation (imaging) speed has been highly improved when

the adaptive windowing algorithm is integrated into the @abwu, R., and Huang, L., 1992, Scattered calculation in hetero

wavefield extrapolation. geneous media using a phase-screen propagator: SEG Ex-
panded Abstractd,1, 1289.
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