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Summary

Wavefield extrapolation by spatially variable phase shift is cur-
rently a migration tool of importance. In this paper, we present
a new prestack seismic migration algorithm using the Gabor
transform with application to the Marmousi acoustic dataset.
The imaging results show a very promising depth imaging
algorithm, which is competitive with the best depth imaging
algorithms. The Gabor depth imaging algorithm approximates
generalized phase shift plus interpolation (GPSPI) wavefield
extrapolation using the Gabor, or windowed Fourier, transform
to localize the wavefield. The key to an efficient algorithm is
to develop an adaptive windowing scheme that only localizes
the wavefield as required by the lateral velocity variation.
If there is no lateral velocity variation then no localization
(windowing) is required. When velocity varies rapidly, then
many, relatively narrow, windows are required for accurate
wavefield extrapolation. We present the details of an adaptive
windowing method that has a controlled phase error. Programs
have been coded with the adaptive windowing algorithm, which
substantially reduces the computational burden in wavefield
extrapolation when compared to the full GPSPI integral. We
will illustrate the performance of this algorithm with images
from prestack depth migration of the Marmousi dataset.

Introduction

Migration with Gazdag (1978) phase shift method can only
accommodate constant lateral velocity in any depth step, which
is unrealistic for many practical applications, where velocity
structures are often heterogeneous with strong lateral velocity
fluctuations. To address lateral velocity variations in phase-shift
wavefield extrapolations, phase shift plus interpolation (PSPI)
was proposed by Gazdag and Sguazzero (1984) using a set of
reference (laterally homogeneous) velocities to calculate the
corresponding extrapolated wavefields; the final extrapolated
wavefields are obtained by interpolating with specific velocities
corresponding to certain lateral positions. Stoffa et al. (1990)
gave an alternative extrapolation algorithm, split-step Fourier
migration, dealing with lateral velocity variation while keeping
the advantages of the phase-shift method, i.e., accuracy and effi-
ciency. Other phase-shift wavefield extrapolation methodssuch
as ‘phase-screen propagator’ (Wu and Huang, 1992; Roberts et
al., 1997; Rousseau and de Hoop, 2001; Jin et al., 2002) also
provide for accurate imaging with abrupt velocity variations in
such geological settings as salt-dome environments. Margrave
and Ferguson (1999) used a nonstationary phase shift (NSPS)
method and a generalized phase shift plus interpolation (GPSPI)
to improve migration results, where wavefield extrapolations
were done totally in the Fourier domain using arbitrary velocity
variations. Our wavefield extrapolation method follows Jinand
Wu (1998) and approximates GPSPI with a Gabor extrapolator.
We also have control over speed and accuracy of Gabor wave-
field extrapolations with the help of the adaptive windowing

algorithm by Ma and Margrave (2005). In the following
sections, we will demonstrate the adaptive Gabor wavefield
extrapolation algorithm and give some imaging results created
by these algorithms.

Gabor wavefield extrapolation theory

The Gabor transform

The continuous Gabor transform pair is written as (following
Margrave and Lamoureux (2001))
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′
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wherexT denotes transverse coordinates (e.g.,xT = x in 1D,
xT = (x, y) in 2D), s(xT ) is the input signal,Vgs(x

′

T , kT ) is
the Gabor spectrum ofs(xT ), g(xT − x′

T ) is an analysis win-
dowing function with its center atx′

T , γ(xT −x′

T ) is a synthesis
windowing function, andkT is the coordinate in the wavenum-
ber domain corresponding toxT , R denotes real domain for in-
tegrations. Equation (1) is in fact a Fourier transform of a win-
dowed version of signals(xT ).

Equation 1 is used to calculate the Gabor spectrum ofs(xT ); in
order to recover the original signals(xT ) from its Gabor spec-
trumVgs(x

′

T , kT ), analysis and synthesis windows must satisfy

Z

R

g(xT )γ(xT )dxT = 1 (3)

(Margrave and Lamoureux, 2001), which is called a partitionof
unity (POU). The analysis windows could be any kind of mathe-
matical function. However, in our wavefield extrapolation appli-
cations, we choose functions with a localization property.In this
way, we may represent our wavefield extrapolator depending on
local velocities with a small error. Gaussian windows are good
candidates, and we have chosen them for this paper. We also
choose the synthesis window as unity, that is, we do not localize
wavefields in the synthesis process.

Gabor Wavefield extrapolation

The generalized phase shift plus interpolation (GPSPI) wave-
field extrapolation is formulated as (Margrave and Ferguson,
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1999; Margrave et al., 2004)
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ψ̂(kT , z, ω)Ŵ (kT , xT ,∆z)

· exp (−ikTxT )dkT , (4)

where
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∆z is the step size of extrapolation inz (vertical) direction,ω is
temporal frequency andv(xT ) denotes lateral velocities along
a slab with thickness∆z. Equation (4) extrapolates wavefields
at depthz down to depthz + ∆z in the frequency-wavenumber
domain.

To develop a Gabor approximation to equation (4), we introduce
the approximation

Ŵ (kT , xT ,∆z) ≈
X

j∈Z

Ωj(xT )Sj(xT )Ŵj(kT ,∆z), (7)

X

j∈Z

Ωj = 1, (8)

where Ωj is a family of windows forming a POU (refer to
equation (8), the discrete form of POU),Sj(xT ) is a split-
step Fourier operator for phase correction in the Gabor imaging,
Ŵj(kT ,∆z) is a wavefield extrapolator with reference veloci-
tiesvj , which are
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, (9)
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(10)

and
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Ωj(xT )v(xT )dxT
R

R
Ωj(xT )dxT

, (11)

respectively. Notice that in equation (10),kz is still calculated
with equation (6), using the reference velocityvj corresponding
to a specific windowΩj (see equation (11)) instead ofv(xT ).

Using approximate wavefield extrapolator (7) in (4) gives

ψP (xT , z + ∆z, ω) =
X

j∈Z

Ωj(xT )Sj(xT )

Z

R

ψ̂(kT , z, ω)

· Ŵj(kT ,∆z) exp (−ikTxT )dkT .

(12)

Equation (12) specifies our Gabor wavefield extrapolator.

Adaptive Gabor wavefield extrapolation

If analysis windows in Gabor wavefield extrapolations are uni-
formly distributed along the lateral dimensions, we will, in most
circumstances, have excessive redundancy in computation.That
is, the algorithm without adaptive windowing usually calculates
more windowed Fourier transforms than it requires. For exam-
ple, we know that for homogeneous media, we only need one
window instead of many, where the GPSPI method degenerates
into Gazdag (1978) Fourier migration (phase shift with constant
velocity) in laterally homogeneous media. If the lateral velocity
structures in a slab are not extremely inhomogeneous, we can
use fewer windowed Fourier transforms in wavefield extrapola-
tions than we do in rapidly varying velocity models. Adaptive
windowing algorithms are suggested to deal with different types
of lateral velocity structures met in Gabor wavefield extrapola-
tions.

At this time, we use the Ma and Margrave (2005) algorithm,
which uses phase errors as criteria to determine the number of
windows needed in wavefield extrapolations. i.e.,
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where ǫj is the total phase error within thejth window Ωj ,
Ŵ (kT , xT ,∆z) and its approximation̂Wj(kT ,∆z) have been
windowed byΩj , the reference velocity used to calculate the
Gabor extrapolator̂Wj(kT ,∆z) equals to thejth reference ve-
locity vj ; ‖ · ‖∞ denotes theL∞ norm.

Examples

The Marmousi synthetic data set has been widely used as a
benchmark for testing depth imaging algorithms. The original
dimensions of the Marmousi velocity section are 10,000 m in
width and 3,000 m in depth. The portion we try to image is
shown in Figure 1 (c) (2000-9000 m and 3000 m in depth). In
the Marmousi synthetic data set, we have 240 shot records, each
of which has 96 traces, with time extending to about 2.9 seconds.
For each shot record, there are 241 extrapolation steps withstep
size∆z = 12.5 meters.

Before discussing the imaging results, we explain the parameter
used in the adaptive windowing (or partitioning) algorithm. We
call this parameter ‘threshold’, which is used to set the threshold
in terms of the relative phase error. For example, when thresh-
old = 25%, we mean that 25% of the absolute phase related to
an exact velocity is set as a tolerance value for phase errorsbe-
tween the phases corresponding to a reference velocity (used for
extrapolation) and the exact velocity when patitioning thelateral
velocity structures in each depth. To show how this windowing
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(a) Partitioning the velocity slice using a phase error threshold
of 35% (16 windows created)
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(b) Partitioning the velocity slice using a phase error threshold
of 25% (26 windows created)
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(c) Slice (the red line) adapted from the Marmousi velocity
(colored) model
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(d) Marmousi reference velocity section created by the adap-
tive windowing algorithm using a phase error threshold of
35%
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(e) Marmousi reference velocity section created by the adap-
tive windowing algorithm using a phase error threshold of
25%

Figure 1: Adaptively windowing the Marmousi velocity section for the
Gabor depth imaging

algorithm works, we give two examples using different thresh-
olds (25% and 35%) and the windows created by the adaptive
windowing algorithm with phase error criterion on a velocity
slice (the red line across Figure 1 (c) in depth around 1500 m)
from the Marmousi velocity section (See Figure 1 (a) and (b)).
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(a) The Marmousi velocity model
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(b) Gabor imaging result using a phase error threshold of 35%
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(c) Gabor imaging result using a phase error threshold of 25%

Figure 2: Imaging Marmousi velocity model using the Gabor transform

To see how the adaptive windowing algorithm works in the
whole Marmousi velocity section, in Figure 1 (d) and (e), we
show the reference velocity sections resolved by the adaptive
windowing algorithm in the Gabor imaging process with two
different phase error thresholds. In Figure 1 (d), a relative phase
error threshold of 35% has been used. We can see the reference
velocity section is very coarse compared to the exact Marmousi
velocity model (see Figure1 (c)). Though the split-step Fourier
corrections (Stoffa et al., 1990) can be applied to minimizephase
errors in the Gabor wavefield extrapolation, we are not able to
make calculations accurate enough as we carry on spatial phase
shift in depths if the difference between exact and reference ve-
locities is too large. When we use a relative phase error threshold
of 25%, we find that the reference velocity section seen by the
phase error windowing algorithm fits the exact velocity model
quite well (see Figure 1 (e) and (c)). As a result, we may be
able to imaging the Marmousi velocity structures with higher
accuracy. However, as we can see from Figure 1 (a) and (b),
when the phase error threshold is set smaller (meaning more ac-
curate spatial phase shift), the number of windows used in the
Gabor depth imaging increases. More windows results in lower
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imaging efficiency due to more Fourier transforms used in the
Gabor wavefield extrapolation. With limitation from computing
facilities, we have to trade off between imaging efficiency and
accuracy. Our Gabor imaging algorithm gives us the freedom
of choosing between them. In this paper, we use a threshold of
25% as a fairly good phase error threshold to create an acurate
imaging result of the Marmousi velocity model.

To show how these phase error thresholds influence the imaging
results, we give two imaging examples of the Marmousi velocity
model shown in Figure 2 (b) and (c); the accurate Marmousi
velocity is shown in Figure 2 (a) for comparison.

The results shown in Figure 2 (b) and (c) verify the analysis
about the imaging accuracy given before this section. We cansee
that in Figure 2 (b), the Marmousi velocity section has been ad-
equately imaged (though roughly). In the upper part, we havea
more clear image than in the lower part of the Marmousi model.
However, from the middle to the bottom, some parts of the ve-
locity section are not properly imaged. For example, the region
of the anticline enclosing the target reservoir (in depth about
2500 m with distance from 5800 m to 7500 m) is not clearly
imaged in Figure 2 (b). Figure 2 (c) shows us a much better
imaging result, we can see both the shallow and deep parts of the
Marmousi velocity section are very clearly imaged. Especially,
the target reservoir area is imaged in a great details compared to
the one in Figure 2 (b).

The running time for the depth imaging result in Figure 2 (b) is
about 34 hours on a PC, while the imaging result in Figure 2 (c)
is obtained on the same PC using about 104 hours. Even this
running time (104 hours) may not be appealing, we still have
opportunities to improve the efficiency. Nevertheless, we have a
new imaging method that can be used to approximate the ‘exact’
GPSPI imaging approach, which takes much longer computation
time than this one does (examples not shown here).

Conclusions

The Gabor extrapolator is a very promising imaging tool for seis-
mic depth migration. The Gabor imaging results have shown
that we can get accurate depth images for complicated veloc-
ity structures such as the Marmousi velocity model, which isa
solid basis to carry out further research and exploration ofthe
new imaging algorithm. The Gabor extrapolator can be used
to image velocity structures as accurately as we may require.
Computation (imaging) speed has been highly improved when
the adaptive windowing algorithm is integrated into the Gabor
wavefield extrapolation.
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