Non-welded contact interface with media

Xiaoqin(Jean) Cui Larry R. Lines

CREWES Meeting, Mar2,2011

Outline

- > Introduction
- > Mechanism of the interface contacts
- Long wavelength assumption
 - -Estimate moduli for the linear slip interface
- Group theory
 - -Fractured media decompose into fracture medium and background medium
- Conclusions
- Future work

Introduction

media

Introduction

- Schoenberg developed the theory of non-welded contact interface. (1980)
- Pyrak-Nolte has confirmed non-welded contact interface theory by laboratory measurements (1990)
- ≻Chaisri and Krebes obtained the solutions of the reflection and transmission coefficients for non-welded contact interface embedded in isotropic media. (2000)
- Slawinski and Krebes modeled SH wave propagation in nonwelded contact media. (2002)
- ≻Hood,1989, 1991; Carcione,1996; Hsu, 1993; Coates, 1995.

A welded contact interface

AVO and AVAZ detected fractures using amplitude variation versus offset and azimuth (Aki and Richards, 1980, Rügers, 1998)

A welded contact interface boundary conditions (P-SV)

1) The continuity displacements

$$u_{x1} = u_{x2} \qquad u_{z1} = u_{z2} \qquad 1 \qquad u_{x1} \qquad u_{z1} \qquad \sigma_{zx1} \qquad \sigma_{zz1}$$
Welded
2) The continuity stresses
$$2 \qquad u_{x2} \qquad u_{z2} \qquad \sigma_{zx2} \qquad \sigma_{zz2}$$

$$\sigma_{zx1} = \sigma_{zx2} \quad \sigma_{zz1} = \sigma_{zz2}$$

$$\sigma_{zx} = \mu \left(\frac{\partial u_z}{\partial x} + \frac{\partial u_x}{\partial z}\right) \qquad \sigma_{zz} = \lambda \frac{\partial u_x}{\partial x} + (\lambda + 2\mu) \frac{\partial u_z}{\partial z}$$

A non-welded contact interface

Pyrak-Nolte (1990) has confirmed non-welded contact interface theory by laboratory measurements.

- An non-welded interface contact boundary conditions (P-SV)
- 1) The discontinuity displacements

$$u_{x1} - u_{x2} = S_x \sigma_{zx}$$
$$u_{z1} - u_{z2} = S_z \sigma_{zz}$$

2) The continuity stresses

$$\sigma_{zx1} = \sigma_{zx2} \qquad \sigma_{zz1} = \sigma_{zz2}$$

$$\sigma_{zx} = \mu \left(\frac{\partial u_z}{\partial x} + \frac{\partial u_x}{\partial z}\right) \qquad \sigma_{zz} = \lambda \frac{\partial u_x}{\partial x} + (\lambda + 2\mu) \frac{\partial u_z}{\partial z}$$

Finely layered medium behaves approximately as TI medium

Some Strains of fine layer can be expressed in terms of thickness-weighted average

➤An equivalent TI media can replace the fractured media (the linear slip interface embedded in background medium)

Elastic moduli:

✓ Y(2)

The stress tractions across the fracture:

The relationship of stresses and strains

in fracture system (linear slip interface)

$$\begin{bmatrix} \Delta U_{3f}/H \\ \Delta U_{4f}/H \\ \Delta U_{5f}/H \end{bmatrix} = Z \begin{bmatrix} \sigma_3 \\ \sigma_4 \\ \sigma_5 \end{bmatrix}$$

The transverse isotropic fracture system (linear slip interface) compliance matrix

$$\mathbf{Z} = \begin{bmatrix} \mathbf{Z}_{\mathrm{N}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_{\mathrm{T}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{Z}_{\mathrm{T}} \end{bmatrix}$$

Group theory Fractured media decomposed into fracture medium and background medium

> elastic moduli be mapped to the elements of group

Fractured media are originated by fracture sum background media

fractured media can decomposed into background medium and fracture.

Group theory Fractured media decomposed into fracture medium and background medium

 $\mathbf{Z}(3)$ Fractured medium moduli transform to a commutative group $[H, H\rho, g(3), g(4), g(5),]$ Thickness: h_fH $g(3) = H \begin{bmatrix} 1/C33 & 0 & 0 \\ 0 & 1/C44 & 0 \\ 0 & 0 & 1/C44 \end{bmatrix} g(4) = H \frac{C13}{C33} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \checkmark$ Modulus: Cf Y(2) $g(5) = H \left\{ \begin{bmatrix} C11 & C11 - 2C66 & 0\\ C11 - 2C66 & C11 & 0\\ 0 & 0 & C66 \end{bmatrix} - \frac{C13}{C33} \begin{bmatrix} 1 & 0 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \right\}$ Subtracting group element of fracture $g_f(3)$, $g_{f}(3) = \begin{bmatrix} Z_{N} & 0 & 0 \\ 0 & Z_{T} & 0 \\ 0 & 0 & 7 \end{bmatrix}$ from the fractured medium group $[H, H\rho, g(3) - g_f(3), g(4), g(5),]$

Group theory Fractured media decomposed into fracture medium and background medium

The background medium stiffness moduli 6x6 matrix

Fractured media \leftarrow Fracture + background Fractured media - Fracture \rightarrow background

Group theory Fractured media decomposed into fracture and background medium

Fracture compliances with a isotropic background medium:

$$Z_{\rm T} = \frac{1}{C44} - \frac{1}{C66}$$
 $Z_{\rm N} = \frac{1}{C33} \left[1 - \frac{C33 - C13}{2C66} \right]$

 $E_T = \mu Z_T = \frac{C66}{C44} - 1$ $E_N = (2\mu + \lambda)Z_N = \frac{2C66}{C33 - C13} - 1$

$$S_{\rm T} = \frac{E_{\rm T} H}{\mu} \qquad \qquad S_{\rm N} = \frac{E_{\rm N} H}{2\mu + \lambda} \label{eq:ST}$$

Conclusion

- The linear slip interface (non-welded contact) exhibits displacement discontinuity and stress continuity inherent in the boundary conditions.
- ➢ In the long wavelength assumption, the linear slip interface can simulate the fracture and moduli can be derived so that fractured medium can be described with four parameters

 μ , λ , E_N and E_T .

Group theory can decompose fractured media into a fracture medium and a background medium.

Future work

- Model horizontal and vertical fractures (linear slip interface) embedded in isotropic or anisotropic background media.
- Study a medium moduli of the non-linear slip interface by considering the viscosity parameter.
- Study a case of fractured media-wormholes caused by cold heavy oil production.

References

- Aki, K., and Richards, P. G., 1980, Quantitative seismology, theory and methods, volume 1: W H Freeman and Co, Cambridge Press, 144 – 154.
- Crampin, S. 1985, Evidence for aligned cracks in the Earth's crust: First Break, 3, no. 3, 12-15.
- Pyrak-Nolte., L.J., L.R. Myer. And N.G.W. Cook (1990b). Transmission os seismic wave across single natural fracture: J. Geophys. Res. 95. 8617-8638.
- Coates, R.T.; and Schoenberg, M.; 1995, "Finite-difference modeling of faults and fractures", *Geophysics*, 60, 1514-1526.
- Hood and Schoenberg, 1989; Estimation of vertical fracturing from measured elastic moduli: Journal of Geophysical Research, 94, 15,611–15,618.
- Hsu, C.-J., and Schoenberg, M., 1993, Elastic waves through a simulated fractured medium: *Geophysics*, 58, 964–977.
- Pyrak-Nolte., L.J., L.R. Myer. And N.G.W. Cook (1990b). Transmission os seismic wave across single natural fracture: J. Geophys. Res. 95. 8617-8638.
- Raphael A. Slawinski and Edward S. Krebes,2000, Finite-difference modeling of SH-wave propagation in nonwelded contact media: *Geophysics*, vol 67, No5.

References

- Ruger, Andreas. 1998, Variation of P-wave reflectivity with offset and azimuth in anisotropic media: Geophysics 63, 935.
- Schoenberg, M.; 1980, Elastic wave behavior across linear slip interfaces, J. Acoust. Soc. Am., 68, 1516-1521.
- Schoenberg, M.; and Douma, J.; 1988, Elastic wave propagation in media with parallel fractures and aligned cracks, *Geophysical Prospecting*, 36, 571-590.
- Schoenberg, M.; and Muir, F.; 1989, A calculus for finely layered anisotropic media, *Geophysics*, 54, 581–589.
- Schoenberg, M.; and Sayers, C.M.; 1995, Seismic anisotropy of fractured rock, Geophysics, 60, 204-211.

Acknowledgements

Thanks to CREWES and CHORUS sponsors.
Thanks to Dr. E.S Krebes.
Thanks to Zaiming Jiang for discussion.

