#### Match filtering a time-lapse data set utilizing the surface-consistent method

Mahdi Almutlaq and Gary Margrave 9<sup>th</sup> March, 2012 CREWES Technical talk

# Outline

- Surface-consistent hypothesis
- What's a surface-consistent matching filter?
- Examples
- Conclusions & FW
- Acknowledgements

# Surface-consistent hypothesis

The surface-consistent model:

the seismic trace can be modeled as

$$d_{ij}(t) \approx s_i(t) * r_j(t) * h_k(t) * y_l(t)$$
 (1)

where

o  $d_{ij}$ : seismic trace o  $s_i$ : source response at location *i* o  $r_j$ : receiver response at location *j* o  $h_k$ : offset response at location *k*; *k*=[*i*-*j*] o  $y_i$ : subsurface response at *l*; *l*=(*i*+*j*)/2

<u>FACT : the model is reasonable approximation</u> of the seismic trace that is easy to compute.

## Forward modeling



## Inverse modeling



<u>FACT</u> : Seismic data geometry matrix has <u>no unique inverse</u> due to singularity of the square matrix G<sup>T</sup>G, where G contains the positions of four-components above.

# Difference



## NRMS vs. Time shift

$$D_{1}(t) = a \sin(2\pi ft)$$

$$D_{2}(t) = a \sin(2\pi f(t + \delta t))$$

$$\delta D(t) = D_{1}(t) - D_{2}(t) = a(2\pi f \,\delta t) \cos(2\pi ft)$$

$$NRMS = 200 \left[ \frac{a(2\pi f \,\delta t)RMS[\cos(2\pi ft)]}{a.RMS[\sin(2\pi ft)] + a.RMS[\sin(2\pi f(t + \delta t))]} \right]$$

$$NRMS(\%) = 100[2\pi f \,\delta t]$$

| <b>F</b> (Hz) | <b>Time shift</b><br>δt (ms) | NRMS (%) |
|---------------|------------------------------|----------|
| 50            | 0.001                        | 31.4     |
| 50            | 0.002                        | 62.8     |



## NRMS vs. Amplitude

$$D_{1}(t) = \sin(2\pi ft)$$

$$D_{2}(t) = (1+b)\sin(2\pi ft)$$

$$\delta D(t) = D_{1}(t) - D_{2}(t) = b\sin(2\pi ft)$$

$$NRMS(\%) \approx 100 * b$$
Assuming amplitude change is small

| а   | b   | NRMS (%) |
|-----|-----|----------|
| 1.0 | 0.1 | 9.5      |
| 1.0 | 0.6 | 46       |



Small amplitude difference Large amplitude difference

# Surface-consistent matching filters (SCMF)

For two repeated data sets, their surface-consistent model is:

$$d\mathbf{1}_{ij}(t) \approx s\mathbf{1}_{i}(t)^{*}r\mathbf{1}_{j}(t)^{*}h\mathbf{1}_{k}(t)^{*}y\mathbf{1}_{l}(t)$$
(2)

$$d2_{ij}(t) \approx s2_i(t) * r2_j(t) * h2_k(t) * y2_l(t)$$
(3)

Q. Can we design a matching filter for these two data sets?

Matching filter concept:

Spectral ratio is an exact matching filter, but it is unstable in presence of noise.

Alternatively: solve the time-domain in LSQ & FT the solution which is a good approx to the spectral ratio.

# Surface-consistent matching filters (cont')



# Outline

- Surface-consistent hypothesis
- What's a surface-consistent matching filter?
- Examples
- Conclusions & FW
- Acknowledgements

#### Two earth models



#### Other non-repeatable parameters



## Raw shot: before match filtering



**Difference = Baseline – monitor (before match filtering)** 

## Raw shot: after match filtering



Difference = Baseline – monitor (after match filtering)

## Raw stack: before match filtering



## Stack: after match filtering



# Stack: After match filtering & statics



Not: 3<sup>rd</sup> iteration of statics was not necessary. Match filtering was iterated 2 times.

## NRMS values: GOM vs. MGM



(modified plot from Helgerud et al., TLE 2011)

# Conclusions

- Surface-consistent matching filter is analogous to other surface-consistent methods (decon, statics, ...), except the data term is spectral ratio of 2 surveys.
- We compute MF in time in LSQ & FT the result which is an approx to spectral ratio.
- Spectral decomposition of trace-by-trace MF into surface-consistent operators; and
- small NRMS values → balanced amplitude, equalized phase & bandwidth, and small or no time-shifts
- → we have a SCMF that can significantly reduce the non-repeatability observed in TL data sets.

#### Future work







Walkway PP VSP data from the observation well (Alshuhail, et al., 2008)



# Acknowledgements

- CREWES & all the sponsors
- A special thanks to Saudi Aramco for their sponsorship
- Faranak for the good discussion on the SC resid statics, & Rolf for his help w/ the VG data set.