

Full Waveform Inversion of Crosswell Seismic Data

Using Automatic Differentiation

Wenyuan Liao Department of Math. & Stat., University of Calgary

Danping Cao School of Geosciences, China University of Petroleum

CREWES Tech Talk February 1, 2013

Outline

	1. Introduction
	2. Adjoint State Method
	3. Automatic Differentiation(AD)
	4. FWI using AD
	5. Model Test
	6. Conclusions

Introduction

Fixed Receivers – varying sources

Workflow of FWI

Introduction

Mathematical Formulation: PDE-constrained Optimization

$$\mathcal{J}(m) = \frac{1}{2} \int_0^{t_f} \sum_{i=1}^{N_r} (d_{obs}^i - d_{cal}^i(m))^2 dt + \kappa ||m||$$

where

- m : Model parameter(wave velocity)
- *d*^{*i*}_{obs} : Observational data
- $d_{cal}^{i}(m)$: Synthetic seismogram based on m through the wave eq.
- $\kappa \|m\|$: Regularity term (Optional, depending on prior knowledge)

The inverse problem is solved through

 $\min_{m\in\mathbb{H}(\Omega)}\mathcal{J}(m)$

Introduction

• PDE-Constrained Optimization: Gradient Calculation

$$\frac{\partial \mathcal{J}}{\partial m} = -\int_0^{t_f} \sum_{i=1}^{N_r} \left(\left(d_{obs}^i - d_{cal}^i \right) \cdot \frac{\partial d_{cal}^i}{\partial u} \cdot \frac{\partial u}{\partial m} \right) dt + \kappa \frac{\partial \|m\|}{\partial m}$$

Direct computation of $\frac{\partial u}{\partial m}$ is difficult and expensive!

Adjoint-state method is an effective way to resolve this issue

Outline

	1. Introduction
	2. Adjoint State Method
	3. Automatic Differentiation(AD)
	4. FWI using AD
	5. Model Test
	6. Conclusions

Adjoint State Method

• Define the cost functional as

$$\mathcal{J}(m) = \mathcal{J}(u(m), m)$$

which may depend on the model parameter implicitly if no regularity term.

The governing PDE(acoustic wave equation in this case) is stated as

$$\mathbb{L}(u(m),m)=0$$

Here $\ \ \mathbb{L}$ is an operator defining the initial-boundary value problem of the wave equation.

Adjoint State Method: Perturbation Theory

Introduce a perturbation to the parameter:

$$\delta m \Rightarrow \delta u \Rightarrow \delta \mathcal{J}$$

$$\mathbb{L}(u,m) = 0 + \mathbb{L}(u + \delta u, m + \delta m) = 0$$

$$\delta \mathcal{J} = \left(\frac{\partial \mathcal{J}(u,m)}{\partial m} - \left\langle \xi, \frac{\partial \mathbb{L}(u,m)}{\partial m} \right\rangle \right) \delta m$$

where the adjoint-state variable is defined as

$$\left[\left(\frac{\partial \mathbb{L}(u,m)}{\partial u}\right)^*\right]\xi = \left[\frac{\partial \mathcal{J}(u,m)}{\partial u}\right] \Rightarrow \xi = \left[\left(\frac{\partial \mathbb{L}(u,m)}{\partial u}\right)^*\right]^{-1} \left[\frac{\partial \mathcal{J}(u,m)}{\partial u}\right]$$

Adjoint State Method: Lagrange Multipliers

Redefine a new cost functional as

$$\widetilde{\mathcal{J}}(u,m,\xi) = \mathcal{J}(u,m) - \langle \xi, \mathbb{L}(u,m) \rangle$$

Solving the unconstrained optimization problem we obtain the gradient as

where

$$\frac{\partial \tilde{\mathcal{J}}(u,m,\xi)}{\partial m} = \frac{\partial \mathcal{J}(u,m)}{\partial m} - \left\langle \xi, \frac{\partial \mathbb{L}(u,m)}{\partial m} \right\rangle$$

$$\frac{\partial \tilde{\mathcal{J}}(u,m,\xi)}{\partial u} = 0 \Rightarrow \frac{\partial \mathcal{J}(u,m)}{\partial u} - \left(\frac{\partial \mathbb{L}(u,m)}{\partial u}\right)^* \xi = 0 \Rightarrow \xi = \left[\left(\frac{\partial \mathbb{L}(u,m)}{\partial u}\right)^* \right]^{-1} \frac{\partial \mathcal{J}(u,m)}{\partial u}$$

Adjoint -> Discretization or Discretization -> Adjoint

Outline

	1. Introduction
	2. Adjoint State Method
	3. Automatic Differentiation(AD)
	4. FWI using AD
	5. Model Test
	6. Conclusions

Automatic differentiation

 Automatic Differentiation (AD), sometimes alternatively called algorithmic differentiation, is a set of techniques to numerically evaluate the derivative of a function specified by a computer program.

Forward mode AD

Reverse mode AD

AD tools

- <u>AD Model Builder</u> (C/C++)
- <u>ADC</u> (C/C++)
- <u>ADF</u> (Fortran77,Fortran95)
- <u>ADIC</u> (C/C++)
- ADIFOR (Fortran77)
- ADiMat (MATLAB)
- <u>ADMAT / ADMIT</u> (MATLAB)
- <u>ADOL-C</u> (C/C++)
- ADOL-F (Fortran95)
- <u>APMonitor</u> (Interpreted)
- AUTODIF (C/C++)
- <u>AutoDiff .NET</u> (.NET)
- <u>AUTO_DERIV</u> (Fortran77/95)
- ColPack (C/C++)
- <u>COSY INFINITY</u> (Fortran77/95,C/ C++)
- <u>CppAD</u> (C/C++)
- CTaylor (C/C++)
- <u>FAD</u> (C/C++)
- FADBAD/TADIFF (C/C++)
- FFADLib (C/C++)

- **<u>GRESS</u>** (Fortran77)
- <u>HSL_AD02</u> (Fortran95)
- INTLAB (MATLAB)
- <u>NAGWare Fortran</u>
 <u>95</u> (Fortran77,Fortran95)
- OpenAD (C/C++,Fortran77/95)
- **<u>PCOMP</u>** (Fortran77)
- pyadolc (python)
- pycppad (Interpreted,python)
- <u>Rapsodia</u> (C/C++,Fortran95)
- <u>Sacado</u> (C/C++)
- **TAF** (Fortran77,Fortran95)
- TAMC (Fortran77)
- <u>TAPENADE</u> (C/C+ +,Fortran77/95)
- TaylUR (Fortran95)
- The Taylor Center (independent)
- TOMLAB / MAD (MATLAB)
- **TOMLAB / TomSym** (MATLAB)
- Treeverse / Revolve (C/C+ +,Fortran77/95)
- <u>YAO</u> (C/C++)

Outline

1. Introduction
2. Adjoint State Method
3. Automatic Differentiation(AD)
4. FWI using AD
5. Model Test
6. Conclusions

Workflow of FWI

FWI solution one by one

FWI workflow with AD

Benefit of FWI with AD

- Simplify the gradient calculation
- Focus on forward modeling and optimization method
- High efficiency forward modeling program will lead to high efficiency gradient calculation code
- FWI workflow is simplified

Accuracy of Gradient calculation

Gradient by TAPENADE

Gradient by central difference quotient

Gradient calculation: -True model -Synthetic record -Initial model

Outline

	1. Introduction
	2. Adjoint State Method
	3. Automatic Differentiation(AD)
	4. FWI using AD
	5. Model Test
	6. Conclusions

Model test 1

Model:101 X 101 Spatial sample:1m Time sample:0.1ms Source : ricker wavelet Main frequency: 180 Hz Boundary: PML

Inversion result - 1 shot

50 iteration

Inversion result - different shot

5 shot

11 shot

Model test 2

Model:101 X 101 Spatial sample:1m Time sample:0.1ms Source : ricker wavelet Main frequency: 180 Hz Boundary: PML

Inversion result - different shot

5 shots

40

60

80

Inversion result - 1 shot

30 iterations

50 iterations

100 iterations

1000 iterations

Outline

1. Introduction
2. Adjoint State Method
3. Automatic Differentiation(AD)
4. FWI using AD
5. Model Test
6. Conclusions

Conclusion

- Automatic differentiation (AD) is a promising yet not popular approach in Geoscience.
- The gradient calculated through AD is accurate.
- The full waveform inversion workflow is simplified with the usage of the AD tool.
- Model tests show that the full waveform inversion method with AD is effective and efficient in the inversion of the crosswell seismic data.

Future work

- Improve the forward modeling: finite difference 4th-order in time
- Test the large-scale data inversion using checkpoint technology
- Test with other AD tools, and Optimization algorithms
- Test the surface seismic inversion
- Address inverse modeling issues under the current framework
- Test on other types of wave equations

Acknowledgement

- Gary Margrave
- CREWES
- POTSI
- NSERC
- Department of Math. & Stat.
- Chinese Scholarship Council, National Nature Science Foundation of China