Azimuthal seismic difference inversion for fracture weaknesses

Huaizhen Chen CREWES Friday Tech Talk Feb. 5th 2016

OUTLINE

- Introduction
- Theory and Method
- Examples
- Conclusions
- Acknowledgements

Introduction

• Fractures developed in carbonate and unconventional rocks (tight sand and shale).

• Fractures can connect the isolate pores to improve the porosity and permeability of reservoirs.

Seismic response

- Seismic response are different between unfractured and fractured reservoir layers.
- Seismic amplitude varies with incident angle and azimuth (AVAZ).

Research design

Elastic and anisotropic parameters (modulus, velocity) Forward model ins

Fracture parameters (fracture density, fillings)

Seismic response (AVO, AVAZ)

Seismic inversion

Theory and Method

• Rock physics model for crack and fracture

>Penny-shaped crack model
(Hudson, 1980)

>Linear slip model for fracture
(Schoenberg, 1980)

$$\boldsymbol{C} = \boldsymbol{C}_{iso} + \Delta \boldsymbol{C}_{ani}$$

Anisotropic term of stiffness matrix

Penny-shaped crack model

Assumptions

Fracture weaknesses characteristics

- The normal weakness exhibits significant dependence on fluid infill and fracture density.
- The tangential weakness does not vary with the fluid infill but with fracture density .

Relationship between weaknesses

• There is correlation between two fracture weaknesses because of fracture density.

Reflection coefficient equation of HTI medium

• Ruger(1996) equation for HTI medium

$$R_{\rm PP}(\theta,\phi) = \frac{1}{2}\frac{\Delta Z}{\overline{Z}} + \frac{1}{2}\left\{\frac{\Delta \alpha}{\overline{\alpha}} - \left(\frac{2\overline{\beta}}{\overline{\alpha}}\right)^2 \frac{\Delta G}{\overline{G}} + \left[\Delta\delta^{(\rm V)} + 2\left(\frac{2\overline{\beta}}{\overline{\alpha}}\right)^2 \Delta\gamma\right]\cos^2\phi\right\}\sin^2\theta + \frac{1}{2}\left\{\frac{\Delta\alpha}{\overline{\alpha}} + \Delta\varepsilon^{(\rm V)}\cos^4\phi + \Delta\delta^{(\rm V)}\sin^2\phi\cos^2\phi\right\}\sin^2\theta\tan^2\theta$$

 It can be represented as the sum of two parts: isotropic background and anisotropic part

$$R_{\rm PP}(\theta,\phi) = R_{\rm PP}^{\rm iso}(\theta) + \Delta R_{\rm PP}^{\rm ani}(\theta,\phi)$$
$$\Delta R_{\rm PP}^{\rm ani}(\theta,\phi) = \frac{1}{2} \begin{cases} \left(\cos^2\phi\sin^2\theta + \sin^2\phi\cos^2\phi\sin^2\theta\tan^2\theta\right)\Delta\delta^{\rm (V)} \\ +\cos^4\phi\sin^2\theta\tan^2\theta\Delta\varepsilon^{\rm (V)} + 2\left(\frac{2\overline{\beta}}{\overline{\alpha}}\right)^2\cos^2\phi\sin^2\theta\Delta\gamma \end{cases} \end{cases}$$

The relationship between fracture weaknesses and Thomsen anisotropic parameters

• The definition of anisotropic parameters

$$\begin{split} \varepsilon^{(\mathrm{V})} &= \frac{C_{11} - C_{33}}{2C_{33}} \\ \delta^{(\mathrm{V})} &= \frac{\left(C_{13} + C_{55}\right)^2 - \left(C_{33} - C_{55}\right)^2}{2C_{33}\left(C_{33} - C_{55}\right)} \\ \gamma^{(\mathrm{V})} &= \frac{C_{66} - C_{44}}{2C_{44}} \end{split}$$

• The relationships between fracture weaknesses and anisotropic parameters (Based on penny-shaped crack model and linear slip fracture model)

$$\begin{split} \varepsilon^{(\mathrm{V})} &= \frac{-2g\left(1-g\right)\Delta_{\mathrm{N}}}{1-\Delta_{\mathrm{N}}\left(1-2g\right)^{2}} \\ \delta^{(\mathrm{V})} &= \frac{-2g\left[\left(1-2g\right)\Delta_{\mathrm{N}} + \Delta_{\mathrm{T}}\right]\left[1-\left(1-2g\right)\Delta_{\mathrm{N}}\right]}{\left[1-\Delta_{\mathrm{N}}\left(1-2g\right)^{2}\right]\left\{1+\frac{1}{1-g}\left[\Delta_{\mathrm{T}} - \Delta_{\mathrm{N}}\left(1-2g\right)^{2}\right]\right\}} \\ \gamma &= \frac{\Delta_{\mathrm{T}}}{2} \end{split}$$

Anisotropic part of Reflection coefficient with fracture weaknesses

 $\Delta R_{\rm PP}^{\rm ani}(\theta,\phi) = A\Delta$

where

 $\mathbf{A} = \begin{bmatrix} a(\theta, \phi) & b(\theta, \phi) \end{bmatrix}$

$$a(\theta,\phi) = \frac{1}{4}(1-2g)^{2} + \left[(1-2g)+2g(1-2g)\cos 2\phi\right]\sin^{2}\theta + \frac{1}{4}\left[\left(1-2g+\frac{3}{2}g^{2}\right)+2g(1-g)\cos 2\phi+\frac{1}{2}g^{2}\cos 4\phi\right]\sin^{2}\theta\tan^{2}\theta b(\theta,\phi) = \frac{1}{4}\left[-2g(1+\cos 2\phi)\sin^{2}\theta+\frac{g}{2}(1-\cos 4\phi)\sin^{2}\theta\tan^{2}\theta\right]$$

$$\Delta^{\mathrm{T}} = \begin{bmatrix} \Delta_{\mathrm{N}} & \Delta_{\mathrm{T}} \end{bmatrix}$$

Condition

- Fractures are invariant under rotation about the normal to the fracture faces
- 2) Weak anisotropy

Reflection and seismic difference

• Reflection coefficient

$$R_{\rm PP}(\theta,\phi) = R_{\rm PP}^{\rm iso}(\theta) + \Delta R_{\rm PP}^{\rm ani}(\theta,\phi)$$

• Reflection coefficient difference between azimuthal angles (ϕ_1 and ϕ_2)

$$\Delta R_{\rm PP}^{\rm ani}\left(\theta\right) = \left[a\left(\theta,\phi_{\rm 1}\right) - a\left(\theta,\phi_{\rm 2}\right)\right]\Delta_{\rm N} + \left[b\left(\theta,\phi_{\rm 1}\right) - b\left(\theta,\phi_{\rm 2}\right)\right]\Delta_{\rm T}$$

• Seismic difference between azimuthal angles (ϕ_1 and ϕ_2)

$$\Delta seis(\theta) = wvlt * (\Delta R_{PP}^{ani}(\theta))$$
$$= W \left[a(\theta, \phi_1) - a(\theta, \phi_2) \right] \Delta_N + W \left[b(\theta, \phi_1) - b(\theta, \phi_2) \right] \Delta_T$$

• where, *wvlt* is wavelet, and *W* is wavelet matrix.

Decorrelation

• Remove the correlation between fracture weaknesses to improve the accuracy of inversion: Linear fitting

 $\Delta seis(\theta) = W \left[a(\theta, \phi_1) - a(\theta, \phi_2) \right] \Delta_{N} + W \left[b(\theta, \phi_1) - b(\theta, \phi_2) \right] \Delta_{T}$

Seismic inversion for fracture weaknesses

• Seismic difference expression after decorrelation

$$\Delta seis(\theta) = W [c(\theta, \phi_1) - c(\theta, \phi_2)] (D\Delta_N + \eta) + W [d(\theta, \phi_1) - d(\theta, \phi_2)] \Delta_T$$

$$c(\theta, \phi) = a(\theta, \phi)$$

$$d(\theta, \phi) = a(\theta, \phi) \cdot \xi + b(\theta, \phi)$$

• In the case of an M incident angle (seismic difference in the form of matrix)

$$\begin{bmatrix} \Delta seis(\theta_{1}) \\ \Delta seis(\theta_{2}) \\ \vdots \\ \Delta seis(\theta_{M}) \end{bmatrix} = W \begin{bmatrix} c(\theta_{1},\phi_{1}) - c(\theta_{1},\phi_{2}) & d(\theta_{1},\phi_{1}) - d(\theta_{1},\phi_{2}) \\ c(\theta_{2},\phi_{1}) - c(\theta_{2},\phi_{2}) & d(\theta_{2},\phi_{1}) - d(\theta_{2},\phi_{2}) \\ \vdots & \vdots \\ c(\theta_{M},\phi_{1}) - c(\theta_{M},\phi_{2}) & d(\theta_{M},\phi_{1}) - d(\theta_{M},\phi_{2}) \end{bmatrix} \begin{bmatrix} (D\Delta_{N} + \eta) \\ \Delta_{T} \end{bmatrix}$$

 $\mathbf{d} = \mathbf{G}\mathbf{m}$

Inversion

Inversion method (damped least-squares algorithm)

$$\mathbf{m} = \mathbf{m}_{int} + \left[\mathbf{G}^{\mathrm{T}}\mathbf{G} + \boldsymbol{\sigma}\mathbf{I}\right]^{-1}\mathbf{G}^{\mathrm{T}}\left(\mathbf{d} - \mathbf{G}\mathbf{m}_{int}\right)$$

- where, m_{int} is initial model, σ is the damping parameter.
- The construction of initial model
- 1) Rock physics effective model
- 2) AVAZ analysis (Anisotropic AVO gradient)

Rock physics effective model

• Fractured rock physics effective media theory

Inhomogenous medium Isotropic background with fractures

Homogeneous anisotropic medium

(Liu et al., 2012)

• The process to construct fractured rock physics effective model

AVAZ analysis

• In HTI media

$$R_{\rm PP}(\theta,\phi) \approx P + G\sin^2\theta = P + \left[G_{iso} + G_{ani}\cos^2(\phi)\right]\sin^2\theta$$

 where P is AVO intercept, and Giso and Gani denote AVO isotropic gradient and anisotropic gradient respectively.

$$G_{ani} = -g\left(1 - 2g\right)\Delta_N + g\Delta_T$$

• If we have AVO gradients of two azimuthal angles

$$\frac{G(\phi_1) - G(\phi_2)}{\left[\cos^2(\phi_1) - \cos^2(\phi_2)\right]} = G_{ani} = -g\left(1 - 2g\right)\Delta_N + g\Delta_T$$

Examples

• Synthetic test

• P- and S-wave impedances show low values, and fracture weaknesses show high values.

Examples

• Synthetic seismic data of different azimuthal angles (40HZ Ricker wavelet)

Examples

• Seismic difference between different azimuthal angles

• At fractured layers location, there are strong amplitude remains.

• Inverted results

inverted

true

initial

• Initial model are the smooth results of true values. Even when the S/N is 2, fracture weaknesses can be inverted reasonably.

Examples: Real data

Examples: Real data

• The inverted results of fracture weaknesses can be used to estimate stress ratio (Gray et al , 2010), fracture fluid factor (Schoenberg and Sayers, 2009), which may be our future research work.

Conclusions

- Fracture weaknesses are important parameters which can be used to predict underground fractures, and they can be estimated by using azimuthal seismic differences.
- Decorrelation can improve the accuracy of fracture weaknesses inversion.
- Rock physics and AVAZ analysis are two tools to construct initial model of fracture weaknesses for seismic inversion.
- The azimuth of symmetry axis of fractures are ignored here, but the main direction of fractures can be estimated by AVAZ analysis.

Acknowledgements

- Dr. Kris Innanen
- CREWES staff and students
- SINOPEC
- This work is done based on the results of my thesis research which is completed in China University of Petroleum (East China)

Thank you