Amplitude analysis of the inverse scattering series for internal multiple prediction

Andy Iverson

Dr. Kris Innanen Dr. Daniel Trad

1

- Multiple: Seismic energy that has been reflected more than once (SEG wiki)
 - long-path multiple: arrives as a distinct event
 - **short-path multiple**: arrives so soon after the primary that it merely adds tail to the primary (i.e., changes the waveshape).
- For this project the focus is internal long-path multiple attenuation using the inverse scattering series

Goal of internal multiple prediction:

- Correctly predict the amplitudes of all internal multiples without predicting primaries
- In practice:
 - Optimal approximation to amplitudes and minimize artifacts of prediction
 - Prediction then input into adaptive subtraction

Background Information and Theory

CREWES

1D Internal Multiple Prediction

- ISS has successfully predicted multiples from input data
- Has also predicted higher order multiples not originally modeled
- Small amplitude differences between the trace and prediction

Order of Operations

Original Method	Method with Scalar	Transmission Loss
for ik = kz1:kzmax {	for iz = z1:zmax {	Amplitude 0.2 4 6 1 0 2 4 1
Ipos = exp(i*kzPos(ik)*z) Ineg = exp(-i*kzPos(ik)*z) intPos = b1z*Ipos	<pre>for ik = kz1:kzmax { Ipos = exp(i*kzPos(ik)*z)</pre>	P1 P2
intNeg = b1z*lneg	lneg = exp(-i*kzPos(ik)*z)	P3
for iz = z1:zmax {	intPos = b1z*Ipos intNeg = b1z*Ineg	0.4 0.5 Time (s)
inner = sum(intPos(iz+ɛ:zmax)) pred(ik) = pred(ik) + intNeg(iz)*inner*inner }	<pre>inner = sum(intPos(iz+ɛ:zmax)) pred(iz, ik) = intNeg(iz)*inner*inner }</pre>	0.6 0.7 0
}	<pre>pred(iz, :) = pred(iz, :)*φ(iz) } spred(ik) = sum(pred(iz, ik))</pre>	0.9
$b_3(\omega) = \int_{-\infty}^{\infty} dz_1 e^{-i2\frac{\omega}{c_0}z_1} b_1(z_1)$	$\int_{z_1+\varepsilon}^{\infty} dz_2 e^{i2\frac{\omega}{c_0}z_2} b_1(z_2) \bigg]^2$	$\varphi = \frac{1}{\text{Transmission Loss}}$
CREWES	www.crewes.org	NSERC CRSNG WNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

6

1D Multiple Prediction with Scalar

Seismic Trace and Prediction

- Prediction with scalar has been beneficial to multiple M323
- Scalar has been detrimental to M313

2nd Order Multiples

 Second order multiples are generally overpredicted where first order multiples are under predicted

1D Prediction in Pseudo-Depth Time Plot

EWES

www.crewes.org

9

- ε = Search limiting parameter
 - If output domain varies from input
 - Difficult to vary epsilon
 - eg. Previous example (ω)
 - If output domain is the same as input
 - Can use nonstationary epsilon
 - Next example (t, x)

1.5D Time offset Domain Prediction

P1

REWES

Convolution Definition
$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$

P2

M212

z = 0m

z = 400m

z = 550m

V= 1500 m/s

V= 3000 m/s

V= 1500 m/s

$$b_{3}(x,t) = \int dx' \int dt' s(x-x',t'-t) \int dx'' \int_{t'-(t-\varepsilon)}^{t-\varepsilon} dt'' s(x'-x'',t'-t'') s(x'',t'')$$

Stationary epsilon

Nonstationary epsilon

Conclusions and future work

Conclusions:

- In 1D using scalar assisted in correcting transmission losses
- In 1.5D time space domain was able to reduce artifacts through nonstationary epsilon
- Combined these assist in the goal of an accurate amplitude prediction

Future Work:

- Reduce computational expense
- Goal of project is to implement ISS on land seismic data
 - How to calculate epsilon?
 - How to manage irregular spatial sampling?
 - What stage of seismic processing workflow to apply multiple attenuation?
 - Amplitude recovery/gain, statics, deconvolution, ...

Acknowledgments

- CREWES Sponsors
- NSERC grant CRDPJ 461179-13
- Dr. Kris Innanen
- Dr. Daniel Trad
- CREWES staff and students

Questions?

