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ABSTRACT 

This paper reviews the equations of body-wave propagation in an elastic anisotropic 
medium and then focuses upon the particular case of orthorhombic symmetry. This type of 
symmetry is believed to be appropriate for describing the wave-propagation behaviour of 
an industrial laminate, known as phenolic CE, which promises to be a useful material in 
physical seismic modelling experiments to be conducted within the CREWES Project. 

Relationships are derived which enable the determination of the nine elastic 
stiffnesses of a material of orthorhombic symmetry from nine or more observed body-wave 
velocities. 

INTRODUCTION 

As an anisotropic material to be used in physical modelling experiments, the 
industrial laminate phenolic CE is very promising. This material, described by Cheadle and 
Lawton (1989) in this volume, exhibits three different velocities (for a given wave type) 
along three principal orthogonal directions. From its construction it is clear that, ideally at 
least (assuming flawless construction), it should possess three mutually orthogonal axes of 
two-fold symmetry. That is, after a rotation of 180 degrees about any of these axes, the 
material should behave in the same way with regard to elastic-wave propagation as before 
rotation. This type of symmetry is identical to that exhibited by the orthorhombic class of 
crystals, whose elastic properties have been studied extensively (e.g. Musgrave, 1970; 
Nye, 1985). In this paper, the theory of body-wave propagation in anisotropic media is 
reviewed and, for the case of orthorhombic symmetry, the relationships among the elastic 
stiffnesses and the body-wave velocities are elaborated. This will allow “calibration” of the 
material by observing velocities for a limited number of cases. 

THE KELVIN-CHRISTOFFEL EQUATIONS 

The equations of motion governing wave propagation in a generally isotropic elastic 
medium are given by many authors (e.g. Bullen, 1963; Fedorov, 1968; Musgrave, 1970; 
Aki and Richards, 1980; Crampin, 1981, 1984; Nye, 1985). For infinitesimal 
displacements Ui , Cartesian coordinates Xi , density p, stress tensor 0~ and body forces 
per unit mass gi : 

piii = Oi,j + pgi (1) 

where ‘I, j” denotes the partial derivative with respect to xj and where the Einstein 
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summation convention (for repeated indices) applies. 

The stress tensor, in terms of the strain tensor &kl and the stiffness tensor Cijkl, is given in 
accordance with Hooke’s law by: 

oij = cijkl &kl 

where 

Ekl = $l,k + uk,Z) . 

(2) 

(3) 

Substituting (2) and (3) into (l), neglecting any body forces, yields: 

cijkluk,lj - p iii =o. (4) 

These equations of motion, and their solution for monochromatic plane-wave motion, are 
considered by many authors (e.g. Fedorov, 1968; Musgrave, 1970; Keith and Crampin, 
1977; Aki and Richards 1980; Crampin, 1981, 1984) but here I follow Musgrave’s 
treatment most closely. 

The harmonic plane-wave displacement is expressed as: 

uk = Apk eXp [i ci) (SJ, - t)] (5) 

where A is the amplitude factor, Pk is the unit polarization (or displacement) vector, w is 
angular frequency, S, is the slowness vector, and in this equation only, i is the square root 
of -1. The slowness vector gives the direction of wave propagation and may further be 
written: 

s, = v-bz, (6) 

where v is phase velocity and nr is the unit slowness (or wavefront-normal) vector. 
Substitution of (5) and (6) into (4) yields 
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(Cyklnjnl - PV26ikpk = 0 . > (7) 

Thus, the determination of the details of the wave motion has been cast as an eigenvalue 

problem in which, having specified n, and Cijkl, one can solve for PV 2 and Pk. 

Due to the well known symmetries involved (see e.g. Musgrave, 1970; Nye, 1985) 

cijkl = C;jlk = cjikl = Cklji (8) 

and therefore the matrix (Cijklnjnl - pV20ik) is symmetric. This implies in turn that the 

three eigenvalues obtained for PV2 by setting 

I Cijkl njnl - pV20i d =o (9) 

will be real. (Throughout this paper vertical bars denote determinant). Using each of 
these three eigenvalues in turn, the three mutually orthogonal polarization vectors, pk, may 
be found from (7). 

A further consequence of the symmetries embodied in (8) is that there are only 21 
independent stiffnesses, Cijkl. Using the Voigt notation (Musgrave, 1970; Nye, 1985; 
Thomsen, 1986), the fourth-order stiffness tensor may be written as a second-order (6x6) 
IEhX: 

Cijkl + Cmn 

where 

m=i if i =j, 

m =9-(i+j) ifi #j 

and n and kl are analogous to m and ij . 

By introducing the so called Kelvin-Christoffel stiffnesses, given by Musgrave (1970) as: 
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rik = cijklnjnl 

equations (7) and (9) may be rewritten as: 

1 

l-11 - PV2 r12 I-13 Pl 

r21 r22 - ~2 r23 

I I 

p2 =o. 

r31 r32 r33 - PV~ 
P3 

(11) 

This system of three equations is known as the Kelvin-Christoffel (or just 
Christoffel) equations. If a nontrivial solution exists, then 

rll - ~2 r12 r13 

r21 r22 - PV~ r23 = 0. 

r31 r32 r33 - PV~ 

BODY-WAVE VELOCITIES AND PARTICLE MOTIONS IN 
ANISOTROPIC MEDIA OF ORTHORHOMBIC SYMMETRY 

(12) 

Although each Kelvin-Christoffel stiffness is, in general, a sum of nine terms [equation 
(7)], in the case of orthorhombic symmetry only 9 of the 21 independent stiffnesses, c,,, 
are nonzero. These are (Musgrave, 1970; Crampin, 1981; Nye, 1985;): 

Cli,C22,C33,C44,C55,C66,C23,C31 and CU.. The 6 independent rik are then: 
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l-11 = r&l1 + n&66 + n&55 
I?22 = n&6 + n&22 + n&44 
I?33 = n&5 + n&4 + n&3 

l-23 = 312113 (c23 + c44) 

r31 = n3nl (~31 + ~55) 

r12 = nln2 (~12 + ~66). 

Propagation along a principal direction 

For a slowness vector in the l-direction, 

nj =(l, 0, 0) 

and equations (13) reduce to: 

hl = cl1 
rz2 = c66 

r33 = c55 

r23 = r31 = r12 = 0. 

Equation (11) then becomes: 

1 h-p+ 0 r22- 0 PV 2 0 0 1 

Pl 61 p2 =o. 

3 1 0 0 r33-pv21 

> 
(13) 

(14) 

1 (15) 

(16) 

For this rather simple case, that of propagation along a principal direction, there are three 
obvious eigenvalues which will zero the determinant of the 3x3 matrix. For each of these, 
the associated eigenvector P k is the polarization (or unit-particle-displacement) vector. 
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The P wave. - Choosing the eigenvalue solution: 

r11- pv2=0 

reduces the three equations of (16) to two, namely: 

1 
c66- Cl1 O 
0 IL 1 P2 =(). 

c55-Cl1 3 

(17) 

(18) 

The only permissible solution to (18) is: 

P2=P3 =o (1% 

since otherwise at least two of the six independent stiffnesses would have to be equal, 
violating the assumption of orthorhombic symmetry. It follows from equations (15), (17) 
and (19) that 

f’k = (l&o) and ~11 = (cttl~)l/~ (20) 

where vt 1 denotes that v which applies for propagation (slowness) in the l-direction and 
with particle motion (polarization) in the l-direction, that is, the P -wave velocity. 

The S waves. - Choosing each of the other two eigenvalue solutions leads to the 

two solutions: 

pk = (0, 18) and vt2 = (c6&?)1’2 (21) 

and 

pk = (661) and ~13 = (cs~/p)‘/~ , (22) 

these representing S waves polarized in the 2- and 3-directions, respectively. 

The corresponding velocities and polarizations for propagation in the 2- and 3directions 
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are obtained from equations (20), (21) and (22) by cyclic variation of the indices (1,2,3) 

and of the indices (4,5, 6). 

Propagation at 45’ to two principal axes or “edge to edge” 

For a slowness vector in the 23-plane at 45’ to the 2- and 3-axes 

and equations (13) reduce to 

l-11 = w(c55 + C66) 

r22 = wqC22 + C44) 

r33 = uqc33 + c44) 

r23 = 1/2(C23 + C44) . 

(23) 

(24) 

Equation (11) then becomes: 

m(C55 + C66) - pv2 0 0 

0 WC22 + C44) - PV2 1/2(C23 + C44) 

0 l/+23 + C44) WC33 + C44) - pv2 ! 

Pl LPI p2 =o. (25) 
3 

The quasi-P and quasi-SV waves. 
polarization in the 23-plane, assume 

- To consider possible solutions with 

p1=0. (26) 

Equation (25) then reduces to 

WC22 + C44) - PV2 l@C23 + C44) p2 I[ 1 = 
1/2(C23 + C44) 1/2(C33 + C44)- pV2 p3 

0. (27) 
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Since p 2 and p 3 cannot both vanish now, the determinant of the 2x2 matrix must do so. 

This leads to a quadratic in Pv2 whose solutions are given by: 

4pv2 = C22 + C33 + 2C44 - + [(C,, - C22)2 +‘+23 +C44)211’2 * (28) 

One may also solve either of the two equations represented by (27) for PdPs obtaining: 

pdp3 = (* [(c33 - c22)2 + +23 + c44)21”2 - (c33 - c22)}/ [2(c23 + c44) 1 - (29) 

Choosing the plus sign in both equation (28) and (29) gives the quasi-P wave. Its 
polarization (or particle motion) is seen from (29) to be “nearly” longitudinal, thus the 
prefix quasi. (It would be exactly longitudinal, that is p2/p3 = 1, only for c33 = c22.) 

Choosing the minus sign in (28) and (29) gives the quasiSV wave, with a lower v than 
for the quasi-P and with “nearly” transverse polarization. (Again, it would be exactly 
transverse, that is pdp3 = - 1, only for C33 = CD) This is labelled S V only because it is 
the quasi-shear wave that is coupled to the quasi-compressional wave, and not because of 
any significance of the vertical. 

For these particular cases of propagation in the 23-plane at 45’ to each of the 2- and 3- 
axes, we use the special symbols v 44 and v 44 to denote the quasi-P and quasi -S 
velocities, respectively. (Recall that the single index 4 is a contraction of the double index 
23.) 

The SH wave. - Clearly, an eigenvalue of equation (25) is given by: 

l/2&5 + C66) - pv2 = 0 

with the eigenvector components 

(3W 

p2 =p3 =O. (3W 
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From these one has directly: 

ok = (1, 0,O) and v41 = [(C55 + ~66) / (2p)]1’2 . (31) 

The corresponding velocities and polarizations for waves traveling “edge to edge” in the 
31- and 1Zplanes are obtained from equations (28), (29) and (31) by cyclic variation of the 
indices (1,2,3) and of the indices (4, 5, 6). 

STIFFNESSES IN TERMS OF VELOCITIES 

From equation (20) and by cyclic variation of indices: 

c 11 = Pv:l 

c 22 = pv& 

c 33 = pv323 - 1 

From equations (21) and (22), and by cyclic variation of indices: 

c LjJ = pv;3 = pv232 

c 55 = P&1 = P43 

c 66 = pv:2 = pv$1 . 1 

Solving equation (28) for CD, choosing either sign on the square root, one obtains: 

C 23 = [ C2~ + c22c33 + C dd(C 22 + C 33) +4 P 2v 444 

-2pv ?4(c 22 + c 33 +2c 4Lp2 - c 4 

(32) 

(33) 

(34) 

where v 44 may be substituted for v 44. Similarly, by cyclic variation: 
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c31=[c552+c33c11+c55(c33+c11)+4P2~~~ 

-2pv & (c 33 + c 11 + 2c 55)]1’2 - c 55 
(35) 

and 

c12= c2,6+c11c22fC66(c11+c22)+4p2v~6 [ 

-2 pv &(c 11 +c 22 + 2c 66)]1’2 - c 66 . 
(36) 

It is clear then that measurement of nine suitably chosen velocities, at least three of which 
must be off the principal axial directions, permits determination of the nine stiffnesses for 
the case of orthorhombic symmetry. Measuring more velocities than nine simply 
overdetetines the problem and allows one to estimate errors in the measurements and/or 
to judge quantitatively how appropriate the orthorhombic model actually is. 
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