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Anisotropic ray-Born migration/inversion: A synthetic
modeling study

David W.S. Eaton and Robert R. Stewart

ABSTRACT

A least-squares migration/inversion technique is used to investigate the
resolution of isotropic and anisotropic parameters for a transversely isotropic earth
model. The method is based on the elastic ray-Born approximation, which linearizes
the forward modeling problem using far-field, high-frequency and small-perturbation
assumptions. Approximate background ray-Green's tensors comprise the kernel of the
scattering integral, and are computed using a finite-difference approach. Least-squares
inversion is implemented using an iterative three-step conditioned-gradient procedure.
The first step for each iteration resembles prestack Kirchhoff depth migration of the
current data residual, yielding a gradient subimage for each model parameter. An
approximate Hessian operator is then applied to partially deconvolve parameter-
coupling effects, producing a set of model-perturbation images. Finally, a predicted
forward model is computed by scattering from the current set of model perturbations.
This scheme attempts to recover short-wavelength parameter variations relative to the
reference model, rather than its slowly varying components.

The resolution of P- and S-wave velocities, density and Thomsen's anisotropy
parameters is investigated for the case of a homogeneous, isotropic background model,
using both surface and crosswell acquisition geometries. A third example, involving
an anticline structure, composed of anisotropic, inhomogeneous layers is used to
demonstrate the feasibility of these techniques for seismic imaging in structurally
complex areas. Finally, a ray-traced (non-Born) dataset illustrates that superior
resolution of subsurface features (in particular, slope discontinuities) can be achieved
by migrating all elastic wave types simultaneously.

INTRODUCTION

Seismic migration and inversion are closely related processes for obtaining
images of the subsurface. Underlying principles and methodologies vary, but in
essence both techniques attempt to quantify the task of inferring physical and
structural parameters from seismic data. Historically, the term inversion has been
applied to the problem of estimating intrinsic properties that characterize a physical
system (Tarantola, 1987), whereas the term migration has been reserved for imaging
of the structural configuration of geologic discontinuities (Stolt and Benson, 1986).
In both cases, however, the mathematical link between observed data and the final
image is the same: a set of equations of motion that are derived from a constitutive
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model for the earth.

When a constitutive model is chosen such that properties of the earth at any
point are independent of direction, the model is said to be isotropic. Conversely,
virtually all of the constituent minerals in the earth's crust have crystal structures that
are anisotropic (Musgrave, 1970). Anisotropy on a macroscopic scale can be caused
by preferred orientation of anisotropic minerals, as well as periodic thin layering and
stress aligned fracturing (Crampin et al., 1984). Fundamental differences exist between
wave prop-agation in an anisotropic versus an isotropic solid (Duff, 1960; Crampin,
1981). Previous studies of seimic imaging in anisotropic media (Meadows, 1985;
Geoltrain and Cohen, 1989; Uren et al., 1990; Tura, 1990) have stressed the
importance of accounting for anisotropic wave propagation effects, but have dealt
primarily with special cases, such as elliptical anisolropy or plane layering.

This study deals with migration and inversion of seismic data in the presence
of transverse isotropy, a widely applicable form of anisotropy. The methodology used
here is a synthesis of ray, Born and generalized least-squares inverse theory. The
geophysical literature contains numerous examples of similar ray-Born imaging
techniques applied to seismic data, predicated upon various assumptions about the
nature of the background medium. In order of increasing complexity (and ill-
posedness of the inverse problem), these assumptions range from constant-density
acoustic media (eg. Cohen and Bleistein, 1979; Beylkin, 1985; Miller et al., 1987) and
variable-density acoustic media (eg. Raz, 1981; Clayton and Stolt, 1981; Weglein et
ai., 1986; Lebras and Clayton, 1988) to isotropic-elastic media (Beydoun and Mendes,
1989; Beydoun et al., 1989, 1990; Beylkin and Burridge, 1990) and fractured media
(Tura, 1990). The methodology employed here is based primarily on an elastic ray-
Born migration/inversion technique introduced by Beydoun and Mendes (1989).
However, Beydoun and Mendes (1989) considered 2-D isotropic-elastic media,
whereas here the medium is assumed to be 2-1/2 dimensional and transversely
isotropic.

Implicit in the ray approximation used here are the assumptions that near-field
effects can be neglected, and that the scale length of parameter variations for the
background medium are large compared to the dominant seismic wavelength. Our
migration/inversion technique makes use of the following additional assumptions:

1) The anisotropic symmetry system is transversely isotropic. The direction of
the symmetry axis can vary, but must lie in the plane of acquisition.

2) The medium is two dimensional, with mirror symmetry across the plane of
acquisition (ie. shooting across geologic strike). This assumption allows the use of 2-
dimensional modeling with 2-1/2 dimensional corrections, instead of full 3-dimen-
sional modeling.

3) Using a priori information, it is possible to define elastic parameters for a
reference medium that are smoothly varying and a close approximation to the true
earth parameters. This assumption is required to validate the Born approximation.

4) Preprocessing of the data has removed coherent energy caused by surface
waves, multiples, etc., that are not accounted for in the modeling procedure.

The aim of this study is to present several new techniques for both forward
modeling and inversion for a transversely isotropic medium. We will start with a
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description of the finite-difference algorithm used to calculate the background Green's
tensors. The method described here is an extension of finite-difference techniques
introduced by Vidale (1988) and Vidale and Houston (1990) for isotropic media. This
approach is particularly well suited to imaging problems because all quantities are
computed directly on a regular grid; thus no subsequent interpolation is required. Next
the algorithm for forward and inverse scattering will be reviewed. Most of the
accompanying theory is covered by Eaton (1990), Eaton and Stewart (1990) and Eaton
(1991), and is therefore omitted here. Several examples are then presented, to
highlight the advantages and limitations of this approach.

FINITE-DIFFERENCE TRAVELTIME CALCULATION

A practical requirement for this migration/inversion method is the ability to
compute high-frequency (my) Green's functions corresponding to a relatively general
class of inhomogeneous, transversely isotropic elastic media. Specifically, at each
point in the model space, the traveltime, particle-motion vector, initial slowness, out-
of-plane spreading factor (¢._ and geometrical spreading function must be known.
This information is required for all wave types and source/receiver locations. Col-
lectively, these quantities are referred to here as the ray-Green's parameters. Exper-
ience has shown that calculation of these parameters constitutes a major comp-
utational bottleneck, particularly for an inhomogeneous, anisotropic reference model.
For brevity, only the traveltime and amplitude calculations will be reviewed here. A
discussion of how the other ray-Green's parameters are obtained can be found in
Eaton (1991).

In an inhomogeneous, anisotropic elastic medium, the high-frequency travel-
time function, x, is governed by the eikonal equation (Cerveny, 1972; Gajewski and
Psencik, 1987; Kendall and Thompson, 1989)

det[ci_npipl-pSik] = 0 (1)

where c_j_(x)is the elastic stiffness tensor, and pj(x) ---3x/Oxi = x,i defines the slowness
vector and p is density. Typically, the eikonal equation is solved along characteristics,
or rays. Here, an approximate solution to equation (1) under the initial condition x =
0 at x = x, is sought using a technique similar to the method proposed by Vidale
(1988) and modified by Qin et al. (1990). However, a hexagonal mesh of points is
employed here (see Fig. 1), similar to grids used in fluid-flow modeling studies
involving cellular automata (eg. Rothman, 1988). This choice of grids reduces grid-
anisotropy effects (Eaton, 1990).

For the general three-dimensional, anisotropic case, solving the eikonal
equation requires the solution of a sixth-order' polynomial. In essence, the strategy is
to use estimates of two components of the slowness vector, p, to deduce the value of
the third component. The problem is simplified for 2-1/2 dimensional propagation in
the plane of symmetry, since P2 (the component of slowness normal to the symmetry
plane) vanishes. Suppose that for a given four-point stencil the traveltime is known
at points A, B and D (Figure 1). The stencil defines a local co-ordinate system, with
the x3-axis pointing from A-C. Because this direction may not coincide with the
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FIG. 1. Hexagonal mesh used for finite-difference calculations. Inset: Example
of a four-point finite-difference stencil.

anisotropic symmetry axis, it is generally necessary to rotate the stiffness tensor into
the correct orientation. Using the approximation

xD-XB (2)
Pl " h '

the traveltime at point C is given by

zc = X4+p3k (3)

where P3 is chosen to satisfy the eikonal equation (1) at the centre of the stencil. Since
pj and P2 are both known, the eikonal equation may be rewritten as the sixth-order
polynomial

_jp_ = 0 , j =0,...,6 (4)

the coefficients of which are given in Appendix A.
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In this study, an iterative technique is used to solve ffp_). First, the direction
of propagation with respect to the local axis of symmetry is estimated. Using this,
along with known the wave type (ie. qP, qSV or SH), an initial guess of the phase
velocity can be obtained, which in turn can be used to give an estimate of p3, knowing
p_. Starting with this initial guess, Newton's method is employed to refine the
solution. For most cases, this approach converges rapidly (approximately 1-8
iterations, depending on the degree of anisotropy). The algorithm has the most
difficulty near a shear-wave singularity because of the highly nonlinear nature off(p3 ).

Following Vidale (1988), the initial step in the overall procedure is to time the
points in the immediate vicinity of the source point (the source is given a traveltime
of zero). For the type of grid considered here, there are six grid nodes neighbouring
the source (Figure 2), forming a hexagon. The traveltime to each point is simply

(5)= _,.[v ,

where _c is the distance between each node on the grid and v is the group velocity
given by

vi - (6)
pOqq

where D# is a cofactor of the matrix [co, plpl - PSit] (Kendall and Thompson, 1989).
This set of six points comprises the initial computational front. After each subsequent
iteration, the new computational front is taken to be the set of points that have been
timed, but are not completely surrounded by time point (circles in Figure 2). This set
of points will roughly approximate the true wavefront at each iteration. The algorithm
proceeds by determining the node that has the minimum traveltime on the
computational front. The traveltime to all nodes bordering the minimum are then
computed by solving equation (4) as described above. By rigourously working away
from traveltime minima, this method honours the principle of causality, even in the
presence of large parameter contrasts (Qin et al., 1990). The procedure is repeated
until all points on the grid within some prespecified zone of interest have been timed.

AMPLITUDE CALCULATION

In the zeroth-order ray approximation, seismic amplitudes are governed by the
transport equation (Cerveny, 1972),

o (7)2A,iv _ + p-lA°(pvl),i = 0

A function A°(x) that satisfies the transport equation is often referred to as a
geometrical-spreading function. If the amplitude is known at one point along a ray,
the amplitude can be extrapolated using the relation (Cerveny, 1972; Cerveny et al.,
1977)
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a) b) c)

FIG. 2. a) The first step in the algorithm is the calculation of times for the six
neighbouring points around source point (square). The current wavefront is
represented by circles. The solid circle indicates the point with the minimum x
on the current wavefront, b) Timed points after several more iterations. Squares
represent points that are timed, but not on the current wavefront, c) Timed points
one iteration after b).

Lp=V '=J'

where V(x) is the local phase velocity and the quantity J is known as the ray
Jacobian, and can be defined as follows. Let us denote parameters specifying the
initial conditions at the start of a ray (eg. longitudinal and radial takeoff angles) as Y1
and Y2.Tracing three rays from the source with initial parameters (YI,Y2),(Y_+_'I,Yz)
and ("/1,Y2+_'2)will define a ray tube (Figure 3). J is related to a differential surface
element on a wavefront bounded by the ray tube via the relation (Gajewski and
Psencik, 1987)

-- (9)

Expansion or contraction of the ray tube corresponds to a geometrical amplitude
decrease or increase, repectively. Surfaces along which the ray Jacobian vanishes are
known as caustics (Aki and Richards, 1980).

Vidale and Houston (1990) suggested a finite-difference technique for
amplitude calculation based on these geometrical concepts, rather than direct solution
of the transport equation. Here, their method is extended to include anisotropic media.
The first step is to calculate the initial takeoff angle at the source. This is
accomplished by computing the traveltime from four grid nodes surrounding the
source location (Figure 4). The initial slowness on the ray from S° to P is then given
by
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FIG. 3. Differential surface elements 5t_1 and 502 contained
within a ray tube.

o "_I-'_2 +'r3 +'_4
Pl --

2Ax
, (10)

o "_I+'_2 +_3 -'_4
P3 =

where xj is the traveltime from Sj to P, and Ax is the spacing between grid points.
Once the components of slowness are known, the initial phase angle can be computed
using

0o = tan-,(p°ip °) (11)

Estimation of the geometrical-spreading function rests on the assumption that
the length of intersection of the wavefront at a point P with the circular region
containing the six points surrounding P (Figure 5) is constant (roughly equal to 2Ax).
The accuracy of this assumption depends on the in-plane radius of curvature of the
wavefront, which should be large. The change in the first ray parameter, 0°,
corresponding to this arc length, ds, is approximated by
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FIG. 4. Sketch of the raypaths joining four closely spaced source points ($1, $2,
Sj and $4) to a point P on the grid (modified from Vidale and Houston, 1990).
Differentiating the traveltimes computed from the four neighbouring source
points yields the initial slowness for the ray from SOto P.

FIG. 5. Method for calculating Ay,. The total change in the initial phase angle
corresponding to the line element ds on the wavefront is approximated by the
difference 0°mu -00ramfor the six points neighbouring P.
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A_l =Ae ° - e,_-en , (12)

where 0m,_ and 0m_,are the maximum and minimum initial phase angle from the set
of six points surrounding P. Since ds is taken to be constant, the total area of the far-
field surface element, dt_, is then proportional to the quantity y(O°,x). The
corresponding near-field surface element, dt_0,belonging to the respective ray tube can
be estimated numerically for some arbitrary small traveltime, given 0°, A?I, p2(0°) and
knowledge of the geometry of the wavefront in the homogeneous region near the
source. The amplitude function is then computed using the formula

[poo  ol.
/_'= I" _.--r';-_',_'| A0(P ) '

Lpvao J

The initial amplitude, A°, is computed using an asymptotic form of the Green's
function for a homogeneous, anisotropic medium (see Eaton, 1991).

The amplitude function obtained in this manner usually contains artifacts due
to the approximations made here, and small errors in the quantifies computed from
previous steps. As a general rule, a mild low-pass filter is applied to remove some of
these artifacts. Another general limitation of this treatment of seismic amplitudes is
the use of geometrical spreading only; amplitude variations related to reflection/
transmission at interfaces, attenuation, etc., are not accounted for.

EXAMPLE TRAVELT1ME AND AMPLITUDE CALCULATION

We will consider an example that illustrates the ability of this technique to
model wave propagation in a complex medium. This model (see Figures 6 and 7) in-
corporates an anticline structure, and contains both isotropic and anisotropic layers.
In addition, several of the layers in this model have elastic properties (as well as
orientation of the symmetry axis) that vary continuously with position. The computed
seismic traveltimes for qP waves are shown in Figure 8, and the corresponding
amplitudes are shown in Figure 9. The amplitude function, in particular, shows several
interesting features. Note the likely presence of two caustics for this model, indicated
by the linear high-amplitude features. The modeling of these amplitude anomalies
without any undue instability is a desirable feature of this approach, compared to more
conventional amplitude calculation by ray tracing.

THE RAY-BORN APPROXIMATION

The ray-Born approximation for elastic media (Beylkin and Burridge, 1990)
combines approximate ray-Green's tensors with the In'st Born approximation. This
formalism comprises the basis for elastic modeling and inversion in this study. The
precise form of the relation depends on the choice of parameterization. Only one set
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FIG. 6. Layer configuration for model 3. The first layer is a TI composite
material consisting of thin sand and shale layers in equal proportion (Levin,
1979). The anisotropic symmetry axis is normal to the layer boundary. The
second and third layers are partially anisotropic, but with a symmetry axis
parallel to the layer boundary (to represent fracturing). Both layers are nearly
isotropic at the sides of the model, but become progressively more anisotropic
toward the core of the anticline. In addition, the transition layer is isotropic at the
top, with a gradual increase in anisotropy toward the base of the unit. The
underlying basement unit is isotropic, but with a linear velocity gradient normal
to the layer boundary. The area shown is 1275 m across and 1000 m deep.
Smoothed elastic parameters used for the calculation of Green's functions are
displayed in Figure 7. Crosswell shooting geometry and target-zone parameters
are discussed in the text.

FIG. 7. (next page) Gray scale plots of the medium parameters for model 3.
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FIG. 8. Finite-difference qP traveltimes for model 3.
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FIG. 9. Normalized geometrical-spreading amplitude function for qP waves (model
3).
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of parameters has been tested here, consisting of the P- and S-wave velocity in the
direction of the symmetry axis, Thomsen's (1986) anisotropy parameters and density.
Defined in terms of the elastic stiffnesses, the first five parameters may be written
(Thomsen, 1986)

"C -I,ir__0 -=( 33P )

I_0-=(C,,o-')1:_ ,

C_ -C44 (14)y-=
2c,,

(Cl3+C44)2 - (C33-C44)2
2C33(C33- C44)

and

C. -C_3
e -=

2C33

The dimensionless parameters % _ and e have been chosen in a physically meaningful
way. In the limit of weak anisotropy, e and y represent the factor normally associated
with qP- and SH-wave anisotropy (ie. the fractional difference between the fast and
slow velocities). The remaining factor, 5, governs the behaviour of qP and qSV
wavefields for propagation directions close to the symmetry axis.

Details of the derivation of the ray-Born scattering formula for the particular
assumptions employed here are given in Eaton and Stewart (1990). The final expres-
sion may be written

U,.,,(x,y,/) .. St(t)*__. _,m(s)_.(r)_. [sL Am(¢iJ)]('t_2)-lt2A_(t-x ) (15)
t_ i,i

Using the superscripts - and ^ to denote quantifies associated with the source and
receiver Green's tensor, the terms A, 't and "tea in equation (15) are given by

A(x,X,Xr) =/_(x,x )',_(X,Xr)

't(X,X,Xr) ---_(X,X) +g(X,X,) (16)

"C,22(X,Xs,Xr) = _,22(X,Xs) +/_,22(X,Xr )

where x, and xr are the locations of the source and receiver. The vector AmCiJ)
represents the model parameter perturbations at the (id)th pixel, and is transformed
to stiffnesses by L (see Appendix B). s controls the elastic radiation patterns for
individual scattering points, and is given by
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(17)

.BtP3g3g__3P_g,g3, 0, __q_q)r ,

for qP and qSV waves, and

s = (0, 0, 0, ##3,/_#,, -1)r (18)

for SH waves, where p is a slowness vector and g is a unit particle-motion vector (see
Crampin, 1981) associated with the respective Green's tensors. These formulae apply
also to the isotropic case, but can be simplified since g is always either parallel or
perpendicular to p (see Beylkin and Burridge, 1990). Finally, S'(t) is the source
wavelet, after filtering by the operator ¢o3t2ei'¢*,and the summation index f2 denotes
the set of elastic wave types { qP, qSV, SH }.

The ray-Born scattering operator may be rewritten as

(19)Au = BArn ,

to emphasize the linear relationship between data and model parameters implied by
equation (15).

LEAST-SQUARES MIGRATION/INVERSION

The large dimensions of B (typically 105x104 or larger) preclude the use of
standard matrix methods to invert for Am. Instead, a generalized least-squares
approach is adopted here, allowing us to handle noise as well as insufficient and
innaccurate data in a meaningful way. We begin by defining the objective function

E = I(Au q,VAu +Am "]_VmAm) , (20)2

where Wd 1 and Wm1 are a priori covariance operators associated with the data and
model, respectively. The strategy is to determine a model for the earth such that E is
minimized. Assuming that the Initial model is a close approximation to the actual
earth, minimization is accomplished by requiting that the gradient function, g ---VE,
goes to zero. Using equation (20), we can write the gradient function as

g = -B "WuAu+W=Am (21)

The Wu operator represents a weighting function applied to the data residual to favour
or suppress certain components of the data, according to available a priori information
or criteria such as SNR or semblance (eg. Milkereit, 1987). In the absence of any such
information, Wu is simply an identity matrix. The B ° operator (the conjugate transpose
of B) maps each sample in the filtered data-residual vector to the corresponding path
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of constant traveltime in the model space. Thus, B" can be thought of as a filtered
backprojection operator, and is very similar to prestack Kirchhoff migration in its
implementation. The last term in equation (21) prevents the solution from diverging
too far from the initial model (Am = 0), and thus has the role of a damping term. The
absence of any such a priori constraints on the model is expressed mathetmatically
by W= = 0. In this case the solution is undamped, but is also generally ill-posed
(Tarantola, 1987).

Following Beydoun and Mendes (1989), we use an approximate Hessian
operator to condition the gradient estimate given by equation (21). In the Gauss-
Newton approximation (Adby and Dempster, 1974), the Hessian (H ---Vg) is given
by

H -- B *WB +W,, (22)

The (even more) approximate Hessian operator suggested by Beydoun and Mendes
(1989) makes the further assumption that H is diagonal, and thus does not account for
interaction between neighbouring points in the model, but does acount for interaction
between different parameters for the same point. This assumption is similar to the
single-scatter assumption implicit in the Born approximation, and leads to a small (up
to 6x6) matrix for each model pixel, that can be inverted analytically.

The model update for each iteration may be written

Am = _.l_I-tg (23)

The parameter _, determines the step size, and is given by

_. = '_ ' (24)

d t

where the sum over d represents the sum over all of the data traces, and

u,_ = BI:I-lg (25)

Additional details concerning the migration/inversion algorithm can be found in Eaton
(1991).

ELASTIC-MIGRATION IMPULSE RESPONSE

Valuable insight into the nature of the elastic migration aspect of the procedure
can be gained by studying its impulse response. Figures 10-13 show plots of the
impulse response function for various source and receiver orientations. A single trace
containing a band-limited zero-phase pulse at a time of 500 ms was used to generate



549

a

-20 20

-20 20 -20 20

O m

Xr.

1000

+ X1

FIG. 10. Impulse response of migration operator, for source (rightmost arrow) and
receiver (leftmost arrow) in the ^-direction. Scale bars indicate relative plot
amplitude.
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FIG. 11. Impulse response of filtered backprojection operator for vertical source
(right-most arrow) and vertical receiver (leftmost arrow). Scale bars indicate plot
amplitude.
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FlG. 12. Impulse response of the migration operator for a source (right-most arrow)
and receiver (leftmost arrow) oriented as shown. Scale bars indicate plot amplitude.
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FIG. 13. Impulse response of the migration operator for source and receiver oriented
in the jc2-direction.
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these plots. The source and receiver are assumed to be located within an infinite,
isotropic-homogeneous medium with parameters tx = 3000 m/s, [3= 1500 m/s and p
= 2400 kg/m 3. Note that, by including the source and receiver in the image zone,
these examples violate the far-field assumption. In practice, a target zone would
include only portions of the impulse response functions illustrated here.

Conventional Kirchhoff migration and acoustic ray-Born imaging techniques
map individual data points to curves of constant traveltime in the model space
(Schneider, 1978; Miller et al., 1988). Elastic migration/inversion is fundamentally
different; data points are mapped to several iso-traveltime curves, cor-responding to
the relevent subset from the set of ray codes { qP-qP, qP-qSV, qSV-qP, qSV-qSV, SH-
SH }. For unconverted scattered events in a homogeneous-isotropic medium, these
curves are elliptical, with foci at the source and receiver. The radius of curvature of
the iso-traveltime path is the largest for qP-qP scattering, because of the generally
higher velocity of qP-waves. For the same reason, iso-traveltime curves for converted
events are normally shifted away from the source/geophone that is radiating/receiving
qP waves.

Observe that the number of imaged parameters depends on the wave types
radiated from the source, and received at the geophone. In Figure 13, where both the
source and receiver are oriented in the x2 (transverse) direction, only SH waves are
scattered, and three of the six possible parameters are imaged (13,y,and p). The other
three plots involve P-SV scattering, and image five of the six parameters. The number
of parameters imaged remains the same even in the presence of background aniso-
tropy (although the impulse response can be much different), provided that the
symmetry axis lies in the plane of acquisition. Hence, in order to resolve all six of the
parameters, a complete nine-component (ie. 3-component sources and receivers)
experiment is a practical requirement (otherwise sources and receivers would have to
be oriented out of the plane such that all three wave types are radiated). However, it
may be possible to invoke a statistical relationship between y and e (Eaton and
Stewart, 1990), to reduce the number of parameters and thus avoid this complication.

MIGRATION/INVERSION EXAMPLES

We will consider four examples of the migration/inversion procedure applied
to synthetic datasets. The acquistion geometry for the first two examples is illustrated
in Figure 14. The fin'st example consists of three end-on surface shot records of 12
traces each with a group interval and near offset of 50 m. The second example
employs a crosswell acquisition geometry, with two sources at depths of 0 m and
2000 m, respectively, shooting into a set of 21 receivers in the second well, starting
at the surface and each separated by 100 m. The background medium is the same as
that used for the impulse-response plots, previously. The input data to the migration/
inversion algorithm was generated by scattering from seven points shown in Figure
14, using the ray-Born approximation (equation (15)). The central point represents a
small positive perturbation to all six of the model parameters (Qt,l_,_',8,e,9).The other
points represent small positive perturbations to individual parameters. Note that the
axis of symmetry is taken to be vertical for these examples.
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FIG. 14. Model geometry used for the first two examples. Example one consists of
three surface shot records. Example two utilizes the crosswell shooting geometry.
Inset shows the distribution and type of scattering points.

Figure 15a shows the scattered P-P and P-SV events calculated for this model.
Note that these records have been modeled as pure-mode synthetics using a P-wave
source. This simplification is realistic and valid in the presence of a low-velocity near-
surface layer, which, coupled with the effect of the free surface, tends to effectively
separate P and SV waves onto the vertical and radial recording channels, respectively
(Eaton, 1988). The source wavelet is zero phase with a 5-15-55-90 Hz trapezoidal
amplitude spectrum. These are the best possible data for the migration/inversion
algorithm, since they satisfy all of the assumptions (far-field, single-scatter, etc.) and
do not contain noise.

The M/I results for this input dataset are shown in Figure 16. The limited
aperture of the recording geometry used for this example severely restricts the range
of scattering angles. Artifacts that result from this restriction include smearing of the
images, and parameter cross-coupling. Nevertheless, some of the essential features of
the input model have been recovered, within the bandwidth of the source function. In
particular, the isotropic parameters appear to be much better resolved than the
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FIG. 15. a) Ray-Born synthetic data for model 1, used as input to the migration/inversion algorithm. Flags indicate the first
trace for each shot record, b) Seismograms computed by scattering from the perturbation models shown in Figure 16.
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FIG. 16. Results of three iterations of migration/inversion for model 1. Scale bars
show percent of actual perturbation magnitude used to generate the input data.
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anisotropic parameters in this example. Some leakage of the p scattering point onto
the _ and _ images suggests that perhaps P- and S-wave impedance would be a better
parameterization for surface reflection data than 0c and I] (Taramola, 1986). No
leakage of the anisotropic parameters onto the _t, I_and p images is apparent. Note
that the anisotropic perturbations are not imaged as points, but as a criss-crossing
linear feature.

Figure 15b shows seismograms computed by scattering from the perturbation
models shown in Figure 16. The frequency content of the output traces is slightly
lower than the frequency content of the input traces, due to the spatial smearing of the
scattering points. The data residual, found by taking the difference between the traces
in Figure 15a and 15b, is about 28% of the energy of the input traces. At first glance,
the magnitude of the inversion results, expressed here as a percentage of the actual
scattering strength, appears to be too small. However, in the Born approximation each
point scatters energy independently. Thus, scattering from a collection of closely
spaced, weak scatterers can produce results nearly identical to scattering from a single,
large perturbation. Integrating the scattering response over a rectangular area of 40 m
by 20 m, centred over the true position of the ct perturbation, for example, gives a net
scattering strength of 83% of the true perturbation. A summary of the integrated
scattering strengths for this model over 40 m by 20 m rectangles appropriately
positioned for each parameter is given in Table 1.

The calculated xl-component traces for the crosswell example are shown in
Figure 17a. In this case the source wavelet is zero phase with a 10-40-80-200
trapezoidal amplitude spectrum. The source is oriented in the xj-direction, and radiates
both P and SV waves. At each receiver position, both the xj- and xs-components of
particle motion were modeled. The results after three iterations of migration/inversion
are shown in Figure 18. Overall, the images of perturbations to et, 13and e are the
most satisfactory. Arguably, the best inversion image for this example is e, rather than
any of the isotropic parameters. The magnitude of the inversion results was somewhat
larger in this case (see Table 2), for reasons that are still uncertain. The re-scattered
results are displayed in Figure 17b, for comparison with the input data. The residual
energy in this case was only 8.5%. The algorithm seems to have the most difficulty
matching the converted-wave response (middle panel in Figure 17).

The preceding examples have all featured a homogeneous background model.
In practice it is unlikely that a homogeneous model will be sufficiently close to the

Parameter o_ 13 _ e p

Individual 83% 41% 69% 52% 34%

parameter

Centreof 134% 79 % 123% 206% 72 %

target zone

TABLE 1. Summary of integrated M/I perturbation values for the first example, for
a rectangular area 40m x 20m in size.
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FIG. 17. a) Ray-Born synthetic data for model2, xl-component. Flags indicate the first
trace in a shot record. Time is in ms, and the number in brackets is the plot scalar
used. b) Seismograms computed by scattering from the perturbation models shown in
Figure 18.
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FIG. 18. Results of three iterations of migration/inversion for model 2. Scale bars
indicate percent of acutal perturbation magnitude used to generate input data.
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true earth to validate the Born approximation. The next example makes use of the
anticline model discussed in the previous example concerning traveltime and
amplitude calculation. A crosswell recording geometry was again used (Figure 5),
consisting of 14 receivers at an interval of 50 m. However, there are no receivers
within the transition layer because of severe amplitude anomalies associated with the
strong heterogeneity in this zone. Three scattering points, each representing a small
positive perturbation to c_,[_and e, were used to generate the input ray-Born dataset
(Figure 19). The target zone was not positioned around the fractured reservoir to avoid
complications associated with the caustics near the zone.

Single-iteration M/I results for the third example are shown in Figure 20. Only
isotropic perturbations were predicted by the M/I algorithm because, in this case, the
a priori variance was chosen to be an extremely small number for the three
anisotropic parameters, effectively damping their solution. The M/I results obtained
here are very similar to isotropic migration results for synthetic data using a VSP
geometry obtained by Beydoun et al. (1990). However, the background model used
here is more complex and contains anisotropic layers.

A final example is used here to demonstrate the behaviour of the algorithm
using a non-Born input dataset. The input data were generated using the Uniseis
raytracing program, and are based on the reflection properties of plane waves at a
smooth interface. The source wavelet is the same as in the previous crosswell
examples. The background model is shown in Figure 21, and includes a sloping
interface that becomes horizontal.

The xt-component traces from the ray-traced input dataset (after removal of the
direct an-ivals) are shown in Figure 22. This dataset includes P-P, P-SV, SV-P and SV-
SV reflections from the interface, but no diffractions. M/I results are shown in Figure
22. Unfortunately, parameter coupling effects as well as the non-Born nature of the
modeled data have resulted in erroneous inversion results. For example, no change in
_,e, or p exists at the interface, but these are all indicated in the inversion. However,
the images do correctly show both the sloping and horizontal parts of the interface.

Note that because only P-P scattering is used in the inversion, the perturbation
image for ct has an appearance that is somewhat different from the other images. The
same image, roughly speaking, would be produced by applying conventional depth
migration techniques to the P-P reflection data. The different appearance is partially

Parameter a _ 8 a p

Individual 185% 60% 57% 26% 67 %

parameter

Centreof 316% 46 % 54% 36 % 163%
target zone

TABLE 2. Summary of integrated M/I perturbation values for the second example,
for a rectangular area 40m x 20m in size.
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FIG. 19. a) Input data for model 4. Time is in ms, and number in brackets shows plot
scalar used. b) Predicted data generated by scattering from migration/inversion results
(Fig. 20).
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FIG. 20. Results of three iterations of migration/inversion for model 3.
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FIG. 21. Geological model and acquisition geometry used for example 4. Every
second receiver position is shown.

due to the longer wavelength (and thus lower resolution) of /'-waves than SV-
waves,since the bandwidth of the source function is the same in both cases. More
significant, however, is the fact that the segments of the interface illuminated by
unconverted reflections are shorter than the segments illuminated when both
unconverted and converted reflections are considered. Figure 24 illustrates this concept
schematically, by showing the reflection raypaths connecting one of the sources to the
first and last receivers. This result illustrates an important advantage of this
migration/inversion approach, compared to conventional migration; by using all of the
scattered wavetypes simultaneously, angular converage of the target zone is improved,
thus giving improved resolution of geological features.

CONCLUSIONS

Several new techniques for seismic modeling and inversion, based on a
transversely isotropic model for the earth, have been described briefly in this paper.
First, a finite-difference methodology for computing ray-Green's functions has been
developed, based on the work of Vidale (1988) and Vidale and Houston (1990) for
calculating traveltimes and amplitudes in isotropic media. This approach has proven
to be relatively fast, and is well suited to imaging applications because all of the
quantities are available directly on a grid. However, the method works best for weakly
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FIG. 22. a) Ray-traced input data for model 4. Flags indicate the first trace in a shot
record. Time is in ms, and the number in brackets is the plot scalar used. b)
Seismograms computed by scattering from the perturbation models shown in Fig. 23.
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FIG. 23. Single-iteration migration/inversion results for model 5. Scale bars show
relative magnitude for the inversion.
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anisotropic media, for which problems associated with the qSV wavefront (eg. trip-
lications, caustics and conical points) do not exist.

A previous elastic least-squares M/I scheme (Beydoun and Mendes, 1989) has
been extended to include the case of transversely isotropic media with the axis of
symmetry in the plane of acquisition. This methodology possesses certain inherent
advantages over many other seismic imaging and inverson techniques. Unlike seismic
migration, the close association between forward and inverse modeling can be

exploited to permit some simple posterior analysis of the inversion results.
Furthermore, this approach is intended to image intrinsic properties of a medium
rather than its reflectivity, the latter depending also on the geometry and aperture of
the acquisition experiment. The use of approximate ray-Green's tensors allows almost
arbitrary configuration of the sources and receivers, as well as a very general form for
the background model. The least-squares inversion method is flexible enough to
accommodate prior information, in addition to insufficient and inaccurate observations.
Finally, linearization of the problem guarantees that the Green's functions, governing

propagation of the wavefield through the background medium, need to be computed
only once. More general nonlinear techniques require very time consuming re-
propagation of the wavefield for each iteration.

Testing of this algorithm using synthetic data has revealed that:
1) Under favourable conditions, anisotropic parameters (in particular, e) can

be recovered from crossweU seismic data. In some cases, resolution of e appears to
be better than any other parameter, isotropic or anisotropic.

2) These techniques are feasible, at least with small datasets, using present-day

workstation technology.
3) Simultaneous migration of all available elastic wave types can improve

seismic images and resolution of slope discontinuities in the subsurface.
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APPENDIX A

Referred to a co-ordinate system with the z-axis aligned with the anisotropic
axis of symmetry, the stiffness matrix for a TI solid has the form
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Cu C12 C,3 0 0 0

C,2 C, C,3 0 0 0

C13 C13 C33 0 0 0 (A-l)

o o oc.o o
0 0 0 0 C_ 0

0 0 0 0 0 C_

where Cn = Cn - 2Caa. Substituting (A-l) into the eikonal equation (1) and solving
for P3 leads to a sixth-order polynomial,

_jp/ = 0 , j=0,...,6 (A-2)

Defining

Aik ==--.Ci3k3

Ba =- (ci3kl+cau)pl , (A-3)

elk =-cilup_-p_ a

the coefficients of this polynomial may be written

_0 --IAI

_, --IA_I+IABAI+lsAAI

_ =I_cI+JACAI+]CAAI+IABsI+Is_I÷IsBAI
(A-4)

--IASCI+I_cBI+IBAcI+IBCAI+IcABI÷IcBAI÷_I,

r;4--IAccl+[CACI+IccAI+IBSCI+IBcBI+IcBsI

_,=IBccl÷lcscl÷ICCSI

and

_ --Icl

In equation (A-4), the notation [ABC] is used to represent a matrix whose f'n'strow
comes from A, the second from B and the third from C. Thus, the coefficients of the
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polynomial equation are found using the determinants of matrices that are row-
permutations of the matrices defined in (A-3).

APPENDIX B

In equation (15), the matrix L transforms the model perturbation vector from
units of (a,13,y,8,e,p) to elastic stiffnesses. For this model pararneterization,

2pa(2e +1) 0 0 0 2pa 2 a2(2e + 1)

2pa 0 0 0 0 a 2

_t _ 0 _2p2aZ(a2-13z) 0 ;_ (B-l)L=

0 2p_, 0 0 0 [32

0 2pl](2y+ 1) 2pl32 0 0 132(2y+1)

0 0 0 0 0 1

where:

_l = _(SP2a38-np2_2°u3+4P2a(a2-_ 2) ;

_2 = "_(4p=a=_+4P=_(a=-_2) ;
(B-Z)

43 = _[4pa28(a2-_2)+2p(a=-f_2)]- f_2 ;

=[2p=a2(a2- ba÷

The parametersin(B-l)and (B-2)refertothebackgroundmedium;hence,foran
isotropicbackground,7,E and8 areallzero.


