
WavePropagationin FinelyLayeredandAttenuatedMedium

Numerical simulation of wave propagation in finely
layered and attenuated medium*

Lawrence H. T. Leand Robert Burridge**

ABSTRACT

Burridge (1991) presents an approximate theory of wave propagation of a plane
wave through a stack of finely layered and anelastic structure. The theory goes beyond
previous works (Burridge and Chang, 1989a & b) in two aspects: (a) the sample
autocorrelation rather than the averaged autocorrelation is used so that the coda of the
computed response is preserved; (b) anelastic effect due to intrinsic attenuation is
incorporated and by "order of magnitude" argument, the terms governing the scattering
and anelastic effects enter separately but in a similar way.

The present work is a numerical justification of the approximate theory. Using
the SH case as an example, we computed the impulse response using two methods: the
approximate method and an exact method for an anelastic medium at both normal and
oblique incidence. Using a simple standard linear solid model with two relaxation
parameters, the medium is made anelastic. Impulse responses obtained by both
methods agree well for both elastic and anelastic cases. The results of this preliminary
investigation can be summarized in several points: (a) accuracy is best for the head of
the pulse; (b) the larger the angle of incidence, the better is the comparison; (c) the
presence of anelasticity exhibits the time delay and dispersion of the broad pulse; (d)
the broad pulse due to scattering effect is comparable to the pulse due to anelasticity
only; (e) the perturbation code is 90 times faster than the exact code for the anelastic
case.

INTRODUCTION

The earth varies in many different scales. For plane-stratified subsurface
models, it has been shown (O'Doherty and Anstey, 1971; Richards and Menke, 1983;
Burridge and Chang, 1989a & b) that the small scale variation can have a significant
effect on the amplitude and phase of the transmitted wavefield and can give rise to the
apparent attenuation and dispersion. In their previous works, Burridge and Chang
(1989a & b) studied the dispersive wave propagation for an impulsive pulse
propagating normally or obliquely through a one-dimensional medium consisting of a
large number of homogeneous and elastic layers. Immediately following the direct
transmitted arrival is a broad pulse. The dispersive effect, in this case, is due to
multiply scattered energy. Coda of the pulse was lost because the averaged
autocorrelation function was used in the computation. As well, dispersive effect due to
intrinsic attenuation is not considered.

In a recent study, Burridge (1991) proposed a method to use the sample
autocorrelation function to retain the local details of the reflection series. By this
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means, the coda of the response is preserved. Viscoelastic effects can also be
introduced into the same approximate theory though in a more elaborate way than in the

o_-kdomain. By assuming that the reflection coefficients are small, a small parameter,

e, is introduced to retain relevant terms in the governing equations. It is found that if

the reflection coefficients are of order e and relaxation effect of order e7, then they can
be separated and have similar overall effects upon the evolution of the pulse. The
separation of these two terms allows one to gain a deeper understanding of the
similarities and dissimilarities between the effects of anelasticity and of multiple
scattering.

The objective of the present work is to implement numerically the approximate
solution and to establish accuracy of the approximate method against an exact method.
In section II, we will present the approximate expression for a downgoing wave and its
implementation for the SH case. Incorporation of viscoelastic effect will be illustrated
by using a simple staThe earth varies in many different scales. For plane-stratified
subsurface models, it has been shown (O'Doherty and Anstey, 1971; Richards and
Menke, 1983; Burridge and Chang, 1989a & b) that the small scale variation can have a
significant effect on the amplitude and phase of the transmitted wavefield and can give
rise to the apparent attenuation and dispersion. In their previous works, Burridge and
Chang (1989a & b) studied the dispersive wave propagation for an impulsive pulse
propagating normally or obliquely through a one-dimensional medium consisting of a
large number of homogeneous and elastic layers. Immediately following the direct
transmitted arrival is a broad pulse. The dispersive effect, in this case, is due to
multiply scattered energy. Coda of the pulse was lost because the averaged
autocorrelation function was used in the computation. As well, dispersive effect due to
intrinsic attenuation is not considered.

PERTURBATION METHOD

The problem we want to address is as follows. Figure 1 shows a stack of
homogeneous and planar layers, which can be elastic or anelastic, bounded by two half
spaces with the same elastic properties. An impulse acts on the first interface at
different angle of incidence. We would like to find the SH response of the receiver
located right beneath the most bottom interface and directly below the point of impact
on the first interface. As we want the homogeneous wave to go through the whole
layered structure, the ray parameter is restricted to be less than the slowness in any
layer. The direct transmitted arrival is not of our interest but close to this arrival is a
broad pulse made up of multiply scattered energy (Burridge and Chang, 1989a & b).

The Approximate Solution

Burridge (1991) discussed, in details, the mathematical steps leading to the
approximate solutions. Without any repetition, the final expression is quoted.
Ignoring the higher order terms, the approximate solution for a downgoing mode is :

W(z,.) = e[,,(_.o)+ b(z,e)l• W(z=O,.) (1)

where a(z,O) represents the effect of multiple scattering upon the evolution of the pulse

shape and b(z,O) represents the effect of anelasticity. Note that the operator (*) in
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(1).is a convolution operator. The retarded time variable,/9 is defined with respect to
the direct transmitted arrival. It is worth mentioning the assumption leading to this
expression. The crucial point in the theory is the assumption that the variation of
reflection coefficients is small (O(e)). If the condition ( R << 1 ) is satisfied, then the

transmission coefficient ( T = _ = 1 -1 R2_ 1) will have unit value. The
structure will be transparent to the wavefield so that at an intermediate step in deriving

the solution, the downgoing wavefield W(zt, O) is assumed to be of the same order as

W(zk, O) where zk --_zl . It is, therefore, expected that there are two conditions that will
break down the assumption. Firstly, the reflection coefficients are large. Secondly,
even if the coefficient condition is satisfied, the assumption deteriorates with the
increase of time for the reflected wavefield from Zl to reach Zk. This can be the case
when the wavefleld penetrates a deeper part of the structure, i.e., when (Zl - Zk) gets
bigger so that the accumulated transmission effect is significant or when the angle of
incidence is steep so that it takes longer for the wavefield to reach the receiver. The
assumption that the imperfection of elasticity is of 2nd order (smaller than the
reflectivity effect) is usually true physically and will be assumed in what follows.

Standard Linear Solid Model

Before we discuss the numerical implementation of equation (1), it is
appropriate at this point to choose an anelastic model. The model we used is a primitive
standard linear solid (SLS) model which, mechanically can be represented by two
springs and a Newtonian dashpot as shown in Figure 2. The dashpot consists of a

piston moving in an ideally viscous liquid of viscosity 7/ and its velocity is proportional
to the applied force thus providing internal friction by dissipating work done on it as
heat (Nowick and Berry, 1972). The behavior of this model is governed by the stress-
strain relation (Nowick and Berry, 1972; Aki and Richards, 1980):

ff + $a _--- Mr (F.+ "fek) (2)

where oand e are stress and strain, Mr is the relaxed modulus, To is the relaxation time
due to constant strain, _ is the relaxation time due to constant stress and the dot
signifies the time derivative.

For a step load, the strain response is

_ 1 1 Ee(t)- _-r [- (1 --_1 exp (- JT)]H(t) (3)

Note that

e(t=+0)= "rcr = 1 =Ju (4)
Mr _ Mu

and

e ._+1 = Jr (5)
W1 r
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where Mu, Ju and Jr are the unrelaxed modulus, unrelaxed compliance and relaxed
compliance. This can be explained as follows. Upon application of a step load at t--0,
the spring characterized by Ju deforms immediately according to Hooke's law while the
Voigt unit remains undeformed due to the fact that the dashpot resists sudden change.
Thus at t=O, the strain of the whole system is given by the unrelaxed compliance Ju of
the spring [equation (4)]. As time goes by, the dashpot will flow to release the stress
upon the Voigt unit. As the stress of the Voigt unit vanishes, the spring of the Voigt
unit is deforming toward an equilibrium strain given by the compliance of the spring,
A/ . Eventually, the strain of the whole system is given by Ju + AJ = Jr of the two
springs in accordance with equation (5).

For an impulsive load o(t) = f(t), we differentiate (3) to obtain

l_L. &(÷_+ 1 l1 1 -Iex_- t/H(t) (6)
(t) =Mu -"1 M----_uTc_"rz/ -_ "eel

where we have used the relation

Mr = Mu _a (7)
_E

Similarly, for a step strain, e'(t) = H(t) the stress response is

o(/) = Mr[a-(1- _-_a)eta- v-_a)]H(t) (8)

and for an impulsive strain e'(t) = _(t) ,

(:r(t)= Mu f(t) + Mul 1-11 exit- -t-I H(t) . (9)

The right hand side of equation (6) [or equation (9)] expresses the total compliance (or
modulus) of the three-element SLS model.

In terms of frequency, the phase velocity is given by

[c(w)]z _ M(w) 00)
P

and the internal friction by

1 _ ImM(co)_ (_E-_a)co (I1)
Q(co) ReM(co) a_zezcr+ 1

where

M(o)) - M, (12)

1 + (_- 1) (1 + icons)(1 + o_) -1
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We note that

M(o) _ O) = Mr (13)

and

M _ Mu (14)

By comparing (13) - (14) with (4) - (5), we find the low frequency behavior
corresponds to the long time anelastic effect and the high frequency behavior to the
instantaneous elastic response. This can be predicted from (2). Since the derivative in
time goes into multiplication by frequency via Fourier transform, at low frequency the
contribution from the derivative terms is negligible and the relaxed modulus governs the
behavior. At high frequency, the opposite is true. The non-derivative terms drop and
the unrelaxed modulus takes control of the system. Figures 3 and 4 show a plot of the

internal friction [Q(o))] -1 and the square of phase velocity [c((_)] 2 with frequency for
•e = 2.5E-4 and _a = 2.4E-4.

Numerical Implementation

In a piecewise homogeneous medium, the scattering argument of the
exponential convolution operator is

_'_ _ n(l) (k) ^a(z_0) = ok/rtl2 R21 _(O- "r(Zh,zt)) (15)
k,l

where k <_1

I (t) (l)
where R_ _R12 = - R21 ] is the normalized SH reflection coefficient (Figure 5) of the

^

l'th interface, ar(zk, zl) is the two-way travel time between Zk and Zl and

L ifk=1
2

ak/= (16)
1 , otherwise

In practice, we would like to calculate a discrete form of a(z,O). Thus, we

discretize the variable 0, dividing its range into intervals [(m -_)h, (m+ 1)hi, where

m takes on integer values and h is the step size. We then accumulate a discrete form of

the quantity a(z,O)dO as follows: Fix the receiver position z. Set am(Z) = 0 for all
relevant integer m. Then, for each admissible pair k ¢1 find m such that

(m - 1)h -< "rj(zk,zl)^ < (m + 1)h (17)

and add to am(z) the quantity

(18)-- t_12 "'12

If k=l, we add to ao(Z) the contribution
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1 Ip (0_2 (] 9)
- 2 v'121

where we have used the approximation

• (t) 1 _ (l)
(')-lfl-{RI2 _ 1- _--[R12)2 (20)T12 - =

(l)
and T12 is the normalized transmission coefficient of the l'th interface. The one-

dimensional array am(Z) is now a discretized form ofa(z,O)dO.

The effect of attenuation is accounted for by the anelastic argument:

N-1

b(z,O)=- _ I°r r ""(t)e'laz" (21)_i auV'ai q t
i=1

where the superscript T denotes the transpose of a vector, zi is the thickness of the i'th
layer,

1 0 '

and e is the normalized eigenvector of the SH system (27) discussed below:

e = C (23)

where C is the normalized factor with respect to the energy flux

,u (24)

and

7= 4 _ (p- p21.0 (25)

M_ 1) in (21) is the anelastic part of the stiffness matrix, MThe matrix

Yz = M y. (26)

where y is the z-component of the displacement-stress vector and

M=[ 0 1__

/.t (27)

p_ p2# 0
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Using the compliance (6) and modulus (9) of the SLS model, we split up the stiffness

matrix into two parts: elastic part M(O) and anelastic part M(1):

M = M (°) + M 0) , (28)

where

[o
M(0) = /2u (29)

p -- p 2/2u 0

and

MO) = /-tuVra 'ret . (30)

1 1
P2/I" (_ -1) exld-L]H(t),fal 0

Thus,

o 11'-- 1
_tM (1) = I.tuVra "reJl "re -_ _:EI J .

[ p21"tu(-_a-1--II&(t)-l--expt-tlH(t)l're,|"ra ' "ra! ] 0
(31)

The discrete form of b(z, O)dO is somewhat easier to calculate than the discrete

form of a(z,O)dO. For each 0 = mh where m = 0,1,2 .... is the time index, we
calculate the discrete sum

b,.n(z) = b(z,O)dO (32)

and assign the cumulated sum to the bin of index m. Thus when m = 0,

N-1

ex ....h._
bo=-_, Ci{Pi-p211i[a-ext_-_a)i)]-(pi-p2111)[1 - _-2(,rE)i)]}Azii=1 (33)

and when m > 0,

N-1

b,,=-_, Ci{pi-2p2/tl ex_-_) sint_ _)i=1

-2 (Pi- p21-ti) exp(- ,t_,] sinh/_,-;h-v-,11Azi (34)
_'¢eli] I z.l,'_elill
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where

1 1

c='- (35)

We now take the discrete convolutional exponential of am(z) + bin(z) in the
discrete time domain. Let us set

cm(z) = am(z) + bin(z) (36)

Assuming the function a(z,O) is causal in 0, we define the generating function

C(_) = _ c,. _'_ (37)
m>0

If Urnis the convolutional exponential of crn, we have

U(_) = _ u,,, _m = elC(¢)l. (38)
m_>0

Now differentiate with respect to _j to get

d V(_) _ U(_) d C(_ (39)
d_ d_

On equating the coefficient of various powers of _ on the two sides of the equation and
dividing by m we obtain

m

_ 1 y_ p CpUm-p (40)U m -- -_
p=l

Since the right member of (40) contains only u0 ..... Urn-t, this formula may be used to
calculate the urn recursively.

EXACT SIMULATION USING FREQUENCY-SLOWNESS (o_-p)
METHOD

Given a spectrum of frequencies up to a Nyquist frequency, the simulation code
calculates the exact impulse response, via inverse FFT, by calculating the global
reflection and transmission coefficients of the entire multi-layered structure. The
algorithm used in this work was briefly described by Chang (1987) and requires
computation of ordinary reflection and transmission coefficients for an interface. The
recursive relation for the global reflection coefficient, R,, is
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:r o (I) on+l,n o (2) I_ .'_-1 (1) Tn,n+l (41)Rn = R n'n+l + T n+l'n P(:)I Rn+l _._- _n+l ,,x _n+I ,'n+l) Pn+l

and the global transmission coefficient, :In is

Tn = Tn+I rt_ p (1) Rn+:.n ,,(2) o _-1 r,(1) 'rn,n+] (42)"" --n+l Fn+ 1 ,,n+l) tn+ 1 t

for n = N-1,...,1 where N is the number of layers and I is the identity matrix. R i'j

and T i' J are the ordinary reflection and transmission coefficients normalized by the

-(1) and n(2) are the exponentials whoseenergy flux for two half-spaces and /"n+l /"n+l
arguments are the vertical phase factors. The global or local reflection and transmission
coefficients, R and T are 2 x 2 matrices for the P-SV case and scalar for the SH case.

The computation procedure is to start the recursion at the bottom interface with
the initial values:

RN_] = R N-1'N (43)

and

TN-] = TN-I'N (44)

and work upward to the top layer.

DISCUSSION OF THE NUMERICAL RESULTS

The synthetic model we used was generated and made available to us by Kai
Hsu. It consists of 1750 homogeneous isotropic layers bounded between two half-
spaces having the same elastic properties. Figures 6 - 8 show the model in metric
scale. Velocities were randomly generated and uniformly distributed with means 50

I.ts/ft, 67 I.ts/ft and 33 las/ft respectively and standard deviations 15 I.ts/ft, 20 I.ts/ft and

10 las/ft respectively to make up three distinct zones. Constant density of 2.5 gm/cc is
used for all layers. The thickness sequence is generated by the exponential thickness
model with means 2 ft, 1 ft and 4 ft. Figures 9 and 10 show the individual one-way
travel time and accumulated one-way travel time at normal incidence. Reflection and
transmission coefficients against depth are displayed in Figures 11 and 12. The
coefficients are normalized by the energy flux so that the sum of the squared
transmission and squared reflection coefficients is unity. As seen from the figures, the
model has a wide range of coefficient values. One might speculate that this kind of
coefficient variation would violate the assumption mentioned in section 2.1, thus
degrading the approximate result. Surprisingly, the comparison is very good for the
early arrival. Figure 13 shows the scattering bin, am or autocorrelation "function" at
normal incidence. The bin values can be best fitted by an exponential curve which has
a sharp and large positive value, to start with, becomes negative and then tapers
asymptotically to zero. Figure 14 shows the cumulated scattering bin. From the
expression characterizing the anelastic effect, one would expect the same exponential
behavior for bm. Figure 15 plots 50 points from the scattering bin, anelastic bin and
the sum of both.
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Figure 16 shows the sensitivity of the exact results to different Nyquist
frequencies and sampling rates. The effect of increasing the sampling points on the
coda amplitude is greater at high Nyquist frequency (10 KHz) than at low frequency
(2.5 KHz) (compare Figure 16(A) with (B); Figure 16(C) with (D) or see Figure 17).
Increasing the Nyquist frequency at fixed sampling rate does not seem to change the
general character of the result as shown in Figure 18. However, because the time step
is smaller, detailed resolution is enhanced, thus making the trace look rougher. Figure
19 shows the sensitivity of the approximate solution to different time steps. A larger
time step increases the smoothing effect since more values [am or bm or both] are
added into the same bin [Figure 19(A)]. Using too small a time step, on the other
hand, conveys more details than necessary [Figure 19(D)]. Bearing these two
limitations in mind we chose to calculate approximate results using a time step 0.5E-4
and exact results using 4096 points and fNyquist = 2.5 KHz.

Elastic Comparison

Figures 20-24 shows the comparison between the approximate and exact elastic
results at 5 different angles of incidence (00, 50, 100, 150, 200). The exact solutions
are solid curves and the approximate solutions are dotted. Accuracy is best for the
head of the pulse and deteriorates as time increases. This is well predicted from the
assumption made in the theory. Discrepancy between approximate and exact results
decreases as the angle of incidence increases. Because the receiver is directly below the
impact point, the wavefield will reach the receiver sooner at larger angle of incidence.
Amplitude increases with angle of incidence as well. In all cases, the approximate coda
advances the exact coda in time. Figure 25 puts all five figures (Figures 20-24)
together. The computation was done in the Cray X-MPEA and took 1.2 sec for the
approximate result and 21 sec for the exact result.

Anelastlc Comparison

Anelastic comparisons are shown in Figures 26-30. Time delay and dispersion
effect are obvious. The discrepancy in this case can be explained by the same argument
as in the elastic case. By comparing Figure 30 with Figure 24, it is tempting to
conclude that the anelastic solution is more stable than the elastic one. This is true since
anelasticity smooths the "roughness" of the spectrum, thus giving rise to a smoother
response. Figure 31 plots all five figures (Figures 26-30) together. The computing
time for the anelastic case was 5 sec for the approximate result and 7.5 min for the exact
result. The cumulative sum of the elastic and anelastic responses are given in Figure
32, providing another means of comparing results calculated by two different methods.
Note that the cumulative quantity here has nothing to do with energy. It simply means
that the area is conserved, i.e. an impulse of unit area was injected into the medium and
the sum of output should approach one as well. Figure 33 shows the impulse
response for the dissipative effect only. The results should not change very much
with different angles of incidence since the exponential terms in (33-34) decay rapidly
with time (due to the large values of the relaxation constants). The dissipative pulse is
comparable to the broad pulse due to scattering effect alone (compare Figure 25 with
Figure 33).

CONCLUSION

In this paper, we have numerically justified the accuracy of the approximate
methods by using the SH case as an example. The accuracy is best for the broad pulse
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immediately after the direct transmitted arrival. For all five angles of incidence
considered, the approximate coda is ahead of the exact coda in time. However, the
approximate code is significantly faster than the exact code.

The work reported here cannot be claimed to be completed since the comparison
was done for one model case only. Studies of the P-SV case and of the sensitivity of
the approximate results to different layer thickness, source spectrum and, most
importantly, different reflectivity sequences have not been thoroughly done but are in
progress. Such a study will establish the domain of validity of the approximate theory,
thus providing a powerful means of understanding the effects of multiple scattering and
anelasticity on seismic wave.
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V receiver

N

Figure 1 : A model consists of N-2 layers bounded by two half spaces.
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f
A f = ]r - J. _ ,'

? t.-j q

.Figure 2 : An example of a three-element standard linear solid model: a Voigt unit in
series with a spring (from Nowick and Berry, 1972).
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n 1Figure 3 : The internal fricfio Q- as a function of frequency in an SLS with a single
relaxation peak.
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Figure 4 : The square of phase velocity [c(CO)]2 as a function of frequency in an SLS
with a single relaxation peak.
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Figure 5 : Time-space diagram showing a double scattering.
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model 1

4500
40OO

1000

I 1 I t I
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depth (m)

Figure 6 : Synthetic SH velocity log containing 1750 layers bounded between two
half-spaces with the same elastic properties. Velocities are randomly generated and

uniformly distributed. The means are 50 gs/ft, 67 _s/ft and 33 bts/ft and the standard

deviations are 15 I.ts/ft,20 I.ts/ftand 10 Ils/ft respectively.
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model 1
5
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Figure 7 : Constant density log for all layers.
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model 1

8

7

0 100 200 300 400 500 600 700 800 900 1000

depth (m)

Figure 8 : Synthetic thickness log for 1750 layers. The first and last layers have zero
thickness representing the half-spaces. Thickness are exponentially distributed with
means 2 ft, 1 ft and 4 ft respectively.
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xlO"3 model 1, incident angle = 0 degree
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Figure 9 : Distribution of calculated one-way travel time within each individual layer at
normal incidence.
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model 1, incident angle = 0 degree
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Figure 10 : Accumulated one-way travel time at normal incidence.

CREWESResearchReoort Volume4 (1992) 16-21



Le, and Burridqe

model l, incident angle = 0 degree
0.4

0.3

.o 0.2
t_

8
o 0.i

.2

0
_ 0

-0.1

-0.2
O

-0.3

-0.4
0 100 200 300 400 500 600 700 800 900 1000

depth (m)

Figure 11 : Distribution of normalized SH reflection coefficient at normal incidence.
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model l, incident angle = 0 degree
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Figure 12 : Distribution of normalized SH u'ansmission coefficient at normal incidence.
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model 1, incident angle = 0 degree
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Figure 13 : Scattering bin at normal incidence.
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model 1, incident angle = 0 degree
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Figure 14 : Cumulative sum of scattering bin at normal incidence.
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model I, incident angle = 0 degree
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Figure 15 : Scattering bin (dashed), anelastic bin (dashed) and the sum of both (solid).
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Figure 16 : Comparison of elastic impulse responses calculated by exact method using

different frequency parameters : (A) fNyquist = 10 KHz with 4096 points; 03) fNyquist
= 10 KHz with 8192 points; (C) fNyquist = 2.5 KHz with 4096 points; (D) fNyquist =
2.5 KHz with 8192 points.
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Figure 17 : Comparison of elastic impulse responses calculated by exact method using

two .different sampling, rates ."(A) fN.yquist = 10 KHz and (B) fNyquist = 2.5 KHz
(Sohd : 8192 points; dashed : 4096 points).
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comparison between two Nyqt freq: 2.5KHz (solid) and 10KHz (dashed)
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Figure 18 : Comparison of elastic impulse responses calculated by exact method using
8192 points and two Nyquist frequencies (solid : 2.5 KHz; dashed : I0 KHz).

CREWES ResearchReoort Volume 4 (1992) 16-29



Le, and Burrid.qe

1 ,(A) dr,= 0.5E-3 I ,(B) dt = 0.5E-4

0.5 0.5

I)

= 0 0

' ' ' -0.5 ' , ,
-0.5 50 100 150 200 500 1000 1500 2000

1 !C) dt. 0.25E-4 1 (D) dt=0.3125E-5

r
0.5 0.5

o
I)
,a

= 0 0

' ' ' -0.5 ' , ,
0'50 10013 2000 3000 4000 0 1 2 3

timeindex timeindex xl04

Figure 19 : Comparison of elastic impulse responses calculated by approximate method
using different time steps.
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xlO -3 model 1, incident angle = 0 degree
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Figure 20 : Comparison of elastic impulse responses at normal incidence (solid : exact;
dashed : approximate).
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xlO-3 model I, incident angle = 5 degrees
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Figure 21 : Comparison of elastic impulse responses at 50 angle of incidence (solid :
exact; dashed : approximate).
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xlO3 model 1, incidentangle= 10degrees
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Figure 22 : Comparison of elastic impulse responses at 100 angle of incidence (solid :
exact; dashed : approximate).
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xl0 -3 model 1, incident angle = 15 degrees
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Figure 23 : Comparison of elastic impulse responses at 150 angle of incidence (solid :
exact; dashed : approximate).
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xlO 3 model 1, incident angle = 20 degrees
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Figure 24 : Comparison of elastic impulse responses at 200 angle of incidence (solid :
exact; dashed : approximate).
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Figure 25 : Figures 20-24 plotted on the same frame (solid : exact; dashed :
approximate).
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xlO -3 model 1, incident angle = 0 degree

Figure 26 : Comparison of anelastic in]pulse responses at normal incidence (solid :
exact; dashed : approximate).
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Le,and Burridqe

xlO3 model 1, incidentangle= 5 degrees

Figure 27 : Comparison of anelastic impulse responses at 50 angle of incidence (solid :
exact; dashed : approximate).
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xlO 3 model 1, incident angle = 10 degrees
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Figure 28 : Comparison of anelastic impulse responses at 10° angle of incidence (solid
: exact; dashed : approximate).
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xl0 3 model 1, incident angle = 15 degrees
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Figure 29 : Comparison of anelastic impulse responses at 15° angle of incidence (solid
: exact; dashed : approximate).
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xl0 3 model 1, incident angle = 20 degrees
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Figure 30 : Comparison of anelasfic impulse responses at 200 angle of incidence (solid
: exact; dashed : approximate).

CREWES Research Reoort Volume4 (1992) 16-41



Le, and Burridqe

xlO-3 model1

-10 50 100 150 2130 250

dane index

Figure 31 : Figures 26-30 plotted on the same frame (solid : exact; dashed :
approximate).

16-42 CREWESResearchReport Volume4 (1992)



Wave Propagation in Finely Layered and Attenuated Medium

model 1, incident angle = 0 degree
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Figure 32 : Cumulative sum of the elastic and anelastic impulse responses at normal
incidence (solid : exact; dashed : approximate).
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xlO 3 model l, perturbation results: dissipation
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Figure 33 : Impulse responses due to dissipation only for 5 angles of incidence : 0o, 5o,

10°,15 ° and 20 ° .
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