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Quantifying uncertainties in AVO forward modeling

Ayon K. Dey, Chandra Rai*, and Carl Sondergeld*

INTRODUCTION

A common tool used in the exploration of hydrocarbons is Amplitude-Versus-
Offset (AVO) analysis.  This particular method has been very effective in identifying
major natural gas deposits.  Sengupta et al., 1997 shows that the AVO response from
data is sensitive to uncertainties in various rock properties.  Specifically, the work of
Sengupta et al., 1997 shows how the uncertainties in compressional-wave velocities
(Vp), shear-wave velocities (Vs), and densities (ρ) project themselves as uncertainties
in an AVO response.  That is to say, these authors quantify how sensitive the AVO
response is to uncertainties in the rock properties.

In this report there is a more detailed analysis of the uncertainties in the rock
properties and its effect on the AVO response.  The rock properties Vp, Vs, and ρ are
used in AVO forward modeling and the results are analysed.  The focus of this work
is to define confidence regions for various exploration scenarios and to examine how
these different regions interact.  The approach taken is to create an elliptical area that
contains a certain amount of scatter data (parameters b0 and b1, in this case) and to
examine to what degree the various areas overlap.

BACKGROUND

This project breaks down into two theoretical areas.  The first theoretical area is
that of estimating a confidence region by ellipse determination; the second is the
determination of whether these confidence regions interact and, if so, to what degree.
This section discusses the major issues in the theory for both of these areas.  The next
section outlines how the theory is resolved for this particular problem.

The general second-degree equation has the form

Ax2+2Bxy+Cy2+2Dx+2Ey+F=0

and the entire family of conic sections is defined by it.  That is, parabolas, hyperbolas,
circles, and ellipses are all defined by the general equation.  These conics relate to the
general equation by the following theorem.

THEOREM 1: Consider the equation Ax2+2Bxy+Cy2+2Dx+2Ey+F=0.  If A, B, and C
are not all 0 and if the graph is not degenerate, then the graph is:

• a circle or an ellipse if B2-4AC<0 (in a circle, B=0 and A=C), or

• a parabola if B2-4AC=0, or
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• a hyperbola if B2-4AC>0.

Hence, the magnitude and the sign of the coefficients A, B, and C will determine what
curve is produced from the general equation.  Moreover, the existence of coefficients
B, D, and E that are not all zero will cause the conic section to deviate from the
standard position. Things can be simplified somewhat by the following two theorems
(Hart, 1950).

THEOREM 2: If B2-4AC≠0, then the curve(s) defined by the general second-degree
equation has a unique center (h,k), and translation of axes to this point as origin
gives a transformed equation without linear terms,

Ax′2+2Bx′y′+Cy′2+F=0.

THEOREM 3: If B≠0, then rotation of axes through an angle θ will remove the xy
term from the general second-degree equation if θ satisfies the equation

cot(2θ) = 
A-C
2B  .

Theorems 2 and 3 state that any form of the general equation can be reduced to a
standard form by eliminating x, y, and xy terms via translation and rotation. All conic
equations can reduce to the form:

A′′x′′2+C′′y′′2+F′′=0,

where

( ) ( ) ( ) ( )′′ = − + −x x h y kcos sinθ θ ,
and

( ) ( ) ( ) ( )′′ = − − + −y x h y ksin cosθ θ .

The reduced form of the general equation states that only the signs of A and C are
relevant in determining which curve results. The equation defines an ellipse if -
4A′′C′′<0 and it defines a hyperbola if -4A′′C′′>0.

Fitting ellipses to data is a fundamental problem in various branches of science.
Most widely employed methods use one of two general techniques: clustering and
least-squares fitting.  Clustering methods are based on mapping sets of points to the
parameter space.  These methods have great advantages (see Fitzgibbon, 1996) but
are computationally complex and yield non-unique solutions. The least-squares
approach (also see Fitzgibbon, 1996) traditionally attempts to fit an ellipse to the
general second-degree equation by estimating the coefficients and then rejecting non-
elliptical fits.  These methods are cheap and effective if the data is relatively noise
free and lies on an elliptical arc.  However, if the data is not strictly elliptical and
there are significant amounts of noise, then an unbounded hyperbolic fit will result.
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After determining the ellipses for various reflection scenarios, one is concerned
with the overlap of various ellipses.  When ellipses have been assigned to two
interfaces, it is of great interest to know how much separation exists between the two
ellipses.  At the most general level, this problem is one of classical calculus,
involving the determination of the area of intersection between two curves.  The
procedure is to determine the points of intersection and to integrate over this domain.
While it seems that there is an analytical approach to resolving this issue, a significant
problem manifests itself in the translation from the analytical method to the
computational method.

To determine the points of intersection between two curves, the usual approach is
to set the analytical description of each curve to zero and solve the system
simultaneously.  In order to see why this method is problematic consider the
following system:

ƒ1(x,y)=A1x
2+2B1xy+C1y

2+2D1x+2E1y+F1=0,

ƒ2(x,y)=A2x
2+2B2xy+C2y

2+2D2x+2E2y+F2=0.

Without loss of generality, assume that A, B, and C are such that the equations above
define ellipses.  The solution to this system will find the points of intersection (if
there are any) between two ellipses ƒ1 and ƒ2.  This system is also a non-linear system
of two equations in two unknowns.  Both ƒ1 and ƒ2 have zero contour lines that divide
the (x,y) plane into regions where their respective equation is positive or negative.
These zero contour lines are of interest as the goal is to determine those points
common to the zero contours of ƒ1 and ƒ2.  Generally, the equations have no relation
and there is nothing unique about a common zero point that can be exploited.  To find
all the solutions to the non-linear system of equations, the full zero contours of both
functions must be mapped out.  Moreover, these contours will, in general, consist of
an unknown number of disjoint closed curves.  To numerically find these roots, one
must have further insight or knowledge of the particular problem.  Often it is required
that there is knowledge of the number of roots and the neighbourhood of each root.

One of the most common methods to solve such systems numerically is to
implement some form of the Newton-Raphson method for a non-linear system of
equations.  The details of this method are beyond the scope of this report.  However,
it is a very efficient means of converging to a root, if a “sufficiently good” initial
guess is known.  In order to automate the process, it is required that the number of
existing roots are known and that a neighbourhood about each root is known.  It is
impossible to know, a priori, all of this information since the system may have
anywhere from zero to infinitely many solutions.  Furthermore, the neighbourhood
about each root must not be too large, for if it is, the method will not converge.  This
proves nothing except that the initial guess was poor.  A common method is to
generate random initial guesses and proceed until convergence is achieved.  This
leads to enormous computational costs.
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METHODOLOGY

Rather than attempt to implement a general method for ellipse fitting that is
complex and not well understood a choice is made to use a different method.  The
method employed in this investigation is to fit a standard deviation ellipse to the
scatter data in order to summarise the dispersion in the point pattern and follows the
method outlined in Ebdon, 1977.

A standard deviation ellipse is an ellipse centred about the mean centre of a data
set, with its long axis in the direction of maximum dispersion and the small axis in the
direction of minimum dispersion.  In order to fit such an ellipse, the following
information must be known:

1. the length of the short axis,

2. the length of the long axis, and

3. the orientation of the ellipse.

The length of the long axis and the length of the short axis are the values of the data’s
standard deviation in the x-direction and the y-direction, respectively.  Data contained
in such an ellipse is interpreted as being within at least K standard deviations of the
mean center.  The step-wise method is as follows.

• Calculate the co-ordinates( )x y, of the mean centre.  Note that summations run

from 1 to n; where n is the total number of data points under consideration.  By
default, the value of n is identical in both thex and y summations.
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• Calculate the co-ordinates of the data in the translated system by subtracting the
mean from each of the original data co-ordinates.

xxxx −=′∀ , .

yyyy −=′∀ , .

• Calculate the tangent of the angle of rotation, θ. Note that from this point forward,
all summations can be assumed to go from i=1  until i=n .
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• The arctangent of this value will give the rotation, or orientation, angle θ that is
between the translated y-axis and the y-axis of the ellipse.  The angle is measured
clockwise from the translated y-axis.  Note that this formulation to calculate the
tangent of the orientation angle can give a negative result.  If the tangent value
happens to become negative, then the correct measure for the orientation angle θ
is θ θ= − −90$ arctan( tan( )).

• Calculate the standard deviation along the x-axis of the ellipse.  This is a measure
of the dispersion in the x-direction for the scatter data.

( ) ( )( )
n

yx
x

∑ ′−′
=

2sincos θθ
σ .

• Calculate the standard deviation along the y-axis of the ellipse.  This is a measure
of the dispersion in the y-direction for the scatter data.

( ) ( )( )
n

yx
y

∑ ′+′
=

2cossin θθ
σ .

Expanding the quadratic expressions in the standard deviation formulae can reduce
computational time.  This reduces the computation time since it avoids multiplying
each ′x and ′y by cos(θ) and sin(θ) individually.  These formulae will generate a 1-σ
ellipse.  That is, the data contained in the ellipse will be within one standard deviation
of the mean.  By introducing a user defined constant K, and multiplying the standard
deviations in the x and y directions by it, the algorithm can fit a K-σ ellipse.
Therefore, ellipses of any size that the user wants can be fit to the data at hand.

Following this method will yield the information necessary to plot an ellipse.  Data
that lies within this ellipse will be within K standard deviations of the mean centre.
Often, the ellipse will be translated and rotated away from the origin.  By using σx, σy,
and θ, the points on the ellipse can be generated by rotating the system through 360°.
To do this, determine a point on the ellipse using the computed information and then
rotate the point and translate it to the correct reference frame.  Figure 1, below,
outlines various standard deviation ellipses and the amount of scatter data that they
contain.
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Figure 1:  1.5-σ, 2-σ, 3-σ, and 4-σ ellipses for a representative scatter data set.

The approach taken to analyse the overlap of ellipses from different reflection
interfaces is far less elegant.  Rather than develop a method that solves for the points
of intersection and then implement some type of numerical integration routine, a
brute force method is chosen.  This method exploits the fact that the regions of
interest are ellipses and it is computationally cheap because the sizes of the data sets
are small (in terms of computation time required).  Quite simply, the method
examines each point in the two data sets of interest and determines whether or not the
point is within both ellipses.  If it is within both ellipses, then it means that the point
is within K standard deviations of both mean centres and cannot be definitely
assigned to one region or the other.  The algorithm is given below.

• x a y b x a y b1 1 1 1 1 2 2 2 2 2, , , , , , , , ,θ θ  are values determined from ellipse fitting for the two

interfaces.  The ai and bi values are the σx and σy values, respectively.

• For each point (x,y) in both data sets, compute:

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
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• If e1<1 and e2<1, then the data point (x,y) is within both ellipses.
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By bookkeeping the number of points that fall within both ellipses, the percentage of
total data that lies in an area common to both confidence regions can be computed.
The following figures show the various kinds of overlap that can occur.

Figure 2: No interaction between confidence regions (0% overlap of contained data).

Figure 3: Insignificant interaction between confidence regions (0.5% overlap of data).
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Figure 4: Significant interaction between confidence regions (21.3% overlap of data).

RESULTS

This section shows the results of a number of different tests on the ellipse
generation algorithm and the overlap algorithm.  Figures 5-7 show scatter plots of b0

versus b1 with 20% uncertainty in varying values.  Test results when the uncertainties
in all the values are the same but the values themselves vary in different combinations
are shown in Figures 8, 9, and 10.  The final six figures (Figures 12-17) show results
for investigations into what occurs when there is a scenario of a shale overlying a
sandstone that is saturated with various fluids.  Outlined in the table below are the
modelling parameters that are used to generate the scatter data seen in Figures 5
through 7.  All the ellipses shown have K=1.5 as a constant and, hence, all the data
within an ellipse is 1.5 standard deviations from the mean center.

Table 2: The values and their uncertainties used to model the data shown in Figures 5-7.

Figure Layer Vp  (km/s) Vs  (km/s) ρρρρ (gm/cc)

5 1 4.875 ± 20% 2.5 ± 20% 1.77 ± 0%

2 5.940 ± 20% 3.0 ± 20% 2.76 ± 0%

6 1 4.875 ± 20% 2.5 ± 0% 1.77 ± 20%

2 5.940 ± 20% 3.0 ± 0% 2.76 ± 20%

7 1 4.875 ± 0% 2.5 ± 20% 1.77 ± 20%

2 5.940 ± 0% 3.0 ± 20% 2.76 ± 20%
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Figure 5:  Scatter data with an upwardly right trend and its 1.5-σ confidence region.

Figure 6: Scatter data with no appreciable trend and its 1.5-σ confidence region.
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Figure 7:  Scatter data with an upwardly left trend and its 1.5-σ confidence region.

These three figures show exactly what is to be expected from the ellipse fitting
method.  Each of the ellipses has the correct orientation and qualitatively contains the
proper amounts of data.  There was no actual computation to see how much data lies
in each ellipse.  This calculation is not difficult.  A variation on the method used to
calculate the overlap between two ellipses could be used to compute exactly how
much data falls within a particular ellipse.  It is interesting to note that, for the scatter
data used in this report, these various standard deviation ellipses seem to correspond
to what would intuitively be a best-fit ellipse to the data.  This lends support to the
claim that fitting these specific ellipses is a reasonable approximation to the general
best-fit ellipse and these ellipses can be generated with far less computational costs
and complexity.

Results are now shown for the cases where there is a known, constant uncertainty
in the parameter values but the values themselves have variations across the interface.
That is to say, the uncertainties in Vp, Vs, and ρ are the same but the values of each can
change over the interface of interest.  Table 3 outlines the scenarios shown in Figure
8, Figure 9, and Figure 10.
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Table 3: The values and their uncertainties used to model the data shown in Figures 8-10.

Figure Interface Layer Vp  (km/s) Vs  (km/s) ρρρρ (gm/cc)

8 i 1 4.875 ± 20% 2.5 ± 20% 1.77 ± 20%

2 5.940 ± 20% 3.0 ± 20% 2.76 ± 20%

ii 1 4.875 ± 20% 2.5 ± 20% 1.77 ± 20%

2 5.940 ± 20% 2.5 ± 20% 2.76 ± 20%

9 i 1 4.875 ± 20% 2.5 ± 20% 1.77 ± 20%

2 5.940 ± 20% 3.0 ± 20% 2.76 ± 20%

ii 1 4.875 ± 20% 2.5 ± 20% 1.77 ± 20%

2 4.875 ± 20% 3.0 ± 20% 1.77 ± 20%

10 i 1 4.875 ± 20% 2.5 ± 20% 1.77 ± 20%

2 5.940 ± 20% 2.5 ± 20% 2.76 ± 20%

ii 1 4.875 ± 20% 2.5 ± 20% 1.77 ± 20%

2 4.875 ± 20% 3.0 ± 20% 1.77 ± 20%

Figure 8:  Cross-plot of b0 versus b1 for the two forward modelled AVO responses.  There is
no overlap between the ellipses and, hence, no interaction between the confidence regions.
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Figure 9:  Cross-plot of b0 versus b1 for the two forward modelled AVO responses.  There is
no overlap between the ellipses and, hence, no interaction between the confidence regions.

Figure 10:  Cross-plot of b0 versus b1 for the two forward modelled AVO responses.  There is
no overlap between the ellipses and, hence, no interaction between the confidence regions.

These plots are representative of three common hydrocarbon exploration areas.
Figures 8, 9, and 10 show that for the model parameters in Table 3, there is nice,
clean separation between the data of the two interfaces.  While this is a pleasing
result, more tests need to be done before this can be declared to be the expected
result.
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Now, a simple stratigraphic scenario is considered.  An isotropic, elastic
wavefield’s AVO response is forward modelled as it encounters a shale-sandstone
interface.  The sandstone itself is saturated with various fluids.  This is geologically
simple in that there are only two layers and there is no dip.  This scenario is
schematically represented in the diagram below. Figures 12 through 17 show
examples that serve to illustrate the AVO sensitivity to pore fluids.  They display how
this method can be used to determine whether or not AVO will be successful tool in
discriminating between different fluid saturations.  The plots all have 1.5-σ ellipses
that contain approximately 68% of the total data.  Table 4 outlines the AVO
parameters used.

shale layer
sandstone layer

Figure 11:  Simple stratigraphy through which the AVO response of an elastic and isotropic
wavefield is modeled.

Table 4:  Uncertainties in the parameter values for the shale-sandstone models.

Layer/Saturation Fluid Vp ±±±± 5% (ft/s) Vs ±±±± 10% (ft/s) ρρρρ ±±±± 5% (ft/s)

shale 8700 4000 2.15

brine 8510 4320 2.08

100% black oil 7385 4430 1.98

50% black oil 7568 4374 2.03

20% lean gas condensate 7028 4372 2.03

100% lean gas condensate 7213 4600 1.83
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Figure 12:  Cross-plot of b0, b1 AVO parameters for brine and 100% black oil saturation in the
sandstone layer.  There is complete separation between confidence regions and, therefore,
no interaction between them.

Figure 13:  Cross-plot of b0, b1 AVO parameters for brine and 50% black oil saturation in the
sandstone layer.  There is a large degree of separation between confidence regions with very
minor interaction between the regions.
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Figure 14:  Cross-plot of b0, b1 AVO parameters for brine and 20% lean gas condensate
saturation in the sandstone layer.  There is complete separation between confidence regions
and, therefore, no interaction between them.

Figure 15:  Cross-plot of b0, b1 AVO parameters for brine and 100% lean gas condensate
saturation in the sandstone layer.  There is complete separation between confidence regions
and, therefore, no interaction between them.
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Figure 16:  Cross-plot of b0, b1 AVO parameters for 20% lean gas condensate and 100% lean
gas condensate saturation in the sandstone layer.  There is an overlap between confidence
regions with a significant amount of interaction.

Figure 17:  Cross-plot of b0, b1 AVO parameters for 20% lean gas condensate and 100%
black oil saturation in the sandstone layer.  There is a large overlap between confidence
regions with a strong amount of interaction.

Figures 12 through 17 indicate that the type of fluid saturation in the sandstone can
greatly impact the amount of overlap and interaction that occurs between the
confidence regions for various AVO responses.  Specifically, AVO can be a useful
tool in discriminating between a brine saturation and black oil or lean gas condensate
saturation.  This, however, is not the case when trying to discriminate between
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different condensate responses or condensate and black oil responses.  In these cases,
there is a significant amount of overlap between the confidence regions and the
interaction between them must be accounted for.

CONCLUSIONS

This project yields results that are consistent with some of the intuitive notions that
arise from AVO forward modelling.  That is, the best-fit estimate to a confidence
region for b0-b1 scatter data is an ellipse.  Furthermore, the specific fitting of standard
deviational ellipses to various scatter data quite adequately approximates the general
best-fit ellipse to the data and at far less cost.  In addition, one can exploit the
geometric properties of these ellipses to quickly and cheaply test to see if a data point
has an equal probability of belonging to either response of interest.  That is, the data
can be efficiently divided into two clear groups; those that unambiguously belong to a
certain response and those that have an equal probability of belonging to either
response being considered.  In addition, the entire process can be applied to any set of
data where the underlying objective is to quantify the observed dispersion.  Overall,
this method can provide a quantitative index for AVO risk assessment.  The ultimate
goal is to create a general method to best-fit ellipses and calculate overlap that is
quick and stable.  While there is an elegant and simple analytical theory to achieve
this, current technology does not allow this theory to be effectively translated into the
discrete language of digital computing.

FURTHER DIRECTIONS

There still exist several avenues that can be explored with this research.  A simple
but important change that can be made to the current programs is the incorporation
some error checking blocks (i.e. insure that the a-axis and the b-axis are not 0).  This
will allow for the method to be more numerically stable and computationally sound.
A more significant path of investigation is the whole problem of best-fitting an ellipse
to the scatter data.  As stated before, this is not a straightforward problem.  Many
theoretical and practical problems can arise by trying to use traditional methods.
Fitzgibbon, 1996 develops a new method for fitting ellipses to scatter data.  Their
claim is that the new method:

• is ellipse-specific so that even ill-conditioned data will return an
elliptical fit,

• can be naturally solved by a generalised eigensystem ,

• and is extremely easy to implement.
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