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ABSTRACT
The pseudospectral method as a limit of finite differences of increasing orders has

been successfully used for forward seismic modeling. In this paper, the
pseudospectral method is applied to a localized wave equation for wavefield
extrapolation in inhomogeneous media.  As a limiting case, this method leads to the
nonstationary phase shift method.

INTRODUCTION
Wavefield extrapolation has been being studied extensively in exploration

seismology. Over the past two years, the nonstationary phase-shift method has been
developed for wavefield extrapolation (Margrave & Ferguson 1997 & 1999a). This
method approximately solves the wave equation in the frequency-wavenumber
domain. It demonstrates two algorithms of wavefield extrapolation: a limiting case of
phase-shift-plus-interpolation equivalent, named PSPI; and a nonstationary phase
shift, called NSPS. Although both formulae (PSPI and NSPS) have a form that is
similar to the constant velocity phase-shift method (Gazdag, 1978) they allow the
phase shift to adapt to lateral velocity variation. In real applications, the velocity
structure is often composed of a laterally inhomogeneous layer, this method makes a
significant contribution to the theory of wavefield extrapolation. Moreover, when the
velocity is constant, both algorithms are convergent to the exact analytic solution. As
an approximate method, however, the nonstationary phase shift has its own limits.
Recently, the formulae of nonstationary phase shift were derived by a Taylor series
expansion technique (Margrave & Ferguson, 1999b), which suggests that the method
works as a localized technique for solving the wave equation.

Generally speaking, if the medium is inhomogeneous, it may be difficult to find
the exact analytic solution and numerical techniques such as the finite-difference
method need to be employed  (e.g. Alford et al., 1974).  The accuracy of the finite-
difference method usually depends upon the order of the approximation to the
differential operators in the wave equation (Baysal et al., 1984). As an alternative to
finite-difference, the pseudospectral is a limit of finite differences of increasing orders
(Fornberg, 1987).  The pseudospectral method was first proposed by Kreiss and
Oliger (1972) with additional basic theory avalable in Orszag (1972), Fornberg
(1975), and Gottlieb and Orszag (1977). The applications of this method can be found
in many fields, e.g. in nonlinear wave dynamics and in weather forecasting.  Various
geophysical literatures provide specific examples of the applications of this method to
2D and 3D forward seismic modeling (wavefield extrapolation along the time
coordinate) (Reshef et. al., 1988; Fornberg 1987; and Gazdag 1981). Nanxuen and
Cheadle (1996) applied this method to wavefield extrapolation.  Improved stability
and accuracy with reasonable computational efficiency memory usage result of the
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pseudospectral method is used instead of the finite-difference method ( Reshef et al.,
1988).

In this paper, the pseudospectral method is applied to wave equation (a discrete
form of wave equation) for wavefield extrapolation by analogue to forward modeling.
The results show that in the case of laterally varying velocity the limiting case of the
pseudospectral method leads to the nonstationary phase shift method.

BRIEF REVIEW OF NON-STATIONARY PHASE SHIFT METHOD
Nonstationary filters (Margrave, 1998) have two distinct filter forms termed

convolution (NSPS) and combination (PSPI).  Applying these filters to wavefield
extrapolation, the formula for NSPS can be written as

dxxikzxkxzk xxNSPSx )exp(),,()0,(),( ∫= αψϕ
(1)

and

xxNSPSxNSPS dkxikzkzx )exp(),(),( −= ∫ϕψ
(2)

where the nonstationary wavefield extrapolator, α , is

)exp(),,( 2
)( 2

2

xxx kvizzxk −= ωα
. (3)

The formula for PSPI can be written as

dxxikxk xx )exp()0,()0,( ∫= ψϕ
(4)

and

dxxikzxkkzx xxxPSPI )exp(),,()0,(),( −= ∫ αϕψ
(5)

where ψ is the wavefield representing velocity potential or pressure, t is time, and x
and z are horizontal and vertical coordinates, respectively. Note that following
Margrave & Ferguson (1997, 1999a) we use the term PSPI here to mean the limiting
case where a reference wavefield is computed for each distinct velocity and no
interpolation is required. The equations above are equivalent and exact in the
stationary limit (i.e. constant velocity). Margrave & Ferguson (1997, 1999a) provided
an explanation of these operators using spatial windowing when velocity is piecewise
constant.

Both NSPS and PSPI are approximate methods. Therefore, the limitations of the
formulae need to be clarified. As an example, Figure 1(a) shows a model composed
of two blocks. The velocity on the left block is 1500 m/s and on the right it is 2500
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m/s. One point source is located close to the velocity boundary on the left. After
extrapolation with ∆z=200 m, the result from PSPI is shown in Figure 2(a) and from
NSPS in Figure 2(b). The figures show that the results from both PSPI and NSPS are
incorrect in this case. In Figure 2(a), the wavefield has discontinuities at the velocity
interface. In figure 2(b) the shape of the wavefield remains constant as it spreads
across velocity boundary. Furthermore, the extrapolations are not self-consistent
because the wavefield cannot be extrapolated back to its original (Figure 3) when the
extrapolated wavefield are used as the data. However, the operators are
complementary in the sense that NSPD is invertable by the PSPI extrapolator and
vice versa (Margarve & Ferguson, 1998b).

         

           

Figure 2. Results of the pulse extrapolated ∆z=200m by (a) PSPI and (b) NSPS; and their
extrapolated back ∆z=-200m by (c) PSPI and (d) NSPS

PSEUDOSPECTRAL METHOD
The equation under consideration is
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Figure 1. The velocity model.
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For homogeneous media, i.e. v is constant, the solution to the initial value problem

of equation (6) can be expressed by a finite Fourier series, provided that the data
specifying the initial conditions are bandpass limited and periodic with respect to x
and z.  If these conditions can be met by ψ0 ,  a solution to equation (6) may be
written as

zxzx0 dkdktzkxkitzx )}(exp{),,( ω++ϕ=ψ ∫ ∫ (7)

where 22
2

2

zxv
kk +=ω  is the dispersion relation that governs the wavenumber and the

temporal frequency and

)0,,(0 == tkk zxϕϕ
(8)

is the finite Fourier Transform over x and z of the wavefield at t=0. Equation (7) is a
form of wavefield extrapolation along the t coordinate, or wavefield modeling
(Gazdag, 1981). Of course, this is not the complete solution as only e+iωt and not e-iωt

is used. If 0| =∂
∂

tt
ψ  is known, then the general solution can be constructed.

 In a similar way, when ),0,( tzx =ψ  is known, the boundary value problem may
also be solved. If we assume that only upward traveling waves are recorded, the
solution may be expressed as

 
)}(exp{),,( tzkxkitzx zx0 ω++ϕ=ψ ∫ ∫ (9)

where ϕ0 is the finite Fourier transform over x and z of Ψ(x,z=0,t) and

2
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xz k
v

k −±= ω . Equation (9) is the equation for wavefield extrapolation along the

spatial z coordinate, i.e. the phase-shift equation (Gazdag, 1978).

In heterogeneous media where velocity is an arbitrary function of the spatial
variables, there is no simple analytic solution. In such cases, the wave equation is
often solved numerically. Consider a wavefield (pressure) propagating in a 2D
velocity distribution v(z,x) in a grid with horizontal direction x, vertical direction z
denoted by l and n, respectively. At each grid the wave equation can be written as
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and may be referred to as a localized wave equation. The solution to this equation for
modeling can be obtained by finite-difference methods (e.g. Alford, 1974), where the
differential operators are approximated by finite difference operators. Instead of using
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the finite-difference operator approximation, pseudospectral methods are those that
evaluate the spatial derivatives by a wavenumber multiplication in the wavenumber
domain (e.g. Gottlieb & Orszag, 1977; Gazdag, 1981; Fornberg & Sloan, 1994). The
derivative ∂Ψ/∂x at any fixed z, for example, is computed in a pseudospectral solution
by taking the Fourier transform of

))](([)( 1 xFikFx
x

xxx ψψ −=∂
∂

(11)
where Fx and  Fx

-1 are the forward  and inverse Fourier transform to x, respectively,
and kx is the wavenumber in the x-direction. Similarly, the second derivative is
obtained by multiplication of (ikx)2=-kx

2,
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 (12)
Differentiation in the z-direction is defined the same way, by replacing x with z in

(11) and (12). The advantages of this approach over finite differencing are stability
and reduction in both memory and the number of computations required for obtaining
a solution of a specified accuracy.   Furthermore, compared to finite differences of the
same accuracy, the pseudospectral method requires fewer grid points (a factor of 25
fewer grid points in 2D and 125 in 3D, Kosloff, 1982). With pseudospectral methods,
the equation to be solved becomes

)]()([ ,
1221

,
2
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,

2
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t
ψ
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∂

(13)

where xzF  denotes the 2D Fourier transform with variables x and z. In order to solve
this equation accurately, the differential with variable t is usually approximated by a
high-order finite-difference operator. Therefore, the process of the solving equation
(13) has the same properties as that of finite difference, e.g. a criterion for choosing
the time difference ∆t is required necessarily to meet the stability conditions (e.g.
Gazdag, 1981). With a suitable choice of ∆t, the interference of the wavefield
between the grid points at new time level can be neglected and the whole set of
equations can subsequently be approximately written as
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2
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2
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2
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2
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t (14)

where both ψ and v are discrestized versions distributed on the grid points.

As discussed above, both extrapolation and modeling are conceptually equivalent
to each other if we consider that modeling is a extrapolation in a coordinate of time.
Therefore, if we exchange the Fourier transform on a spatial coordinate into the time
coordinate, we can obtain the pseudospectral method for extrapolation problem.
Based on this idea, equation (10) for wavefield extrapolation can be written as
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In analogy to equations (10) and (14), let the xtF  to be the 2D Fourier Transform
with variables x and t, equation (6) for wavefield extrapolation can be written as
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If we denote Ψ(x,z,ω) as the Fourier transform with variable t to ψ(x,z,t), then the
equation can be written as
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and the solution to this equation together with initial condition is

))],0,(()[exp(),,( 2
),(

1
2

2 ωω ω =Ψ−±=Ψ − zxFzkiFzx xxzxvx
. (18)

It should be noticed that a divergence from common procedure occurs here in that
high-order finite-difference operators are not used to approximate the differential
operator on the left hand of equation (17). Instead, we solve the equation directly to
the following purpose: account is taken of the higher order approximation for the time
derivative, when the velocity is constant, the equation can exactly extrapolate the
wavefield to any depth. However, it is important to remember that this equation is
derived from equation (15) and it is only valid when the interference of the local
wavefield near each grid can be neglected. Just as in usual pseudospectral method, the
extrapolation distance z must be carefully considered.

If the interference of the wavefield from the grid points during the extrapolation
can be neglected, the term )( 2

2
2
x v

k ω−  can be moved to inside the Fourier Transform xF

and therefore, the solution can be written as

))],0,()(exp([),,( 2
),(

1
2

2 ωω ω =Ψ−±=Ψ − zkzkiFFzx xxzxvxx
. (19)

Equations (18) and (19) are the PSPI and NSPS of nonstationary phase shift,
respectively (Margrave & Ferguson, 1997, 1999). These can be physically explained
in that with the finite extrapolation distance, every point on the wavefield at the
original depth level can be considered as a wavelet source. The wavelets emitted from
these sources propagate with their local velocities in a circle (2D) or sphere (3D) to
the new level. The superposition of all these wavelets on the new layer forms the
extrapolated wavefield. In variable velocity media, when wavelet expansion from the
source, the pattern of the circle will be distorted and the extrapolation distance z is
required to be sufficiently small so that the distortion can be ignored. It was noticed
that the differences between NSPS and PSPI become lessened when a recursive



From pseudospectral to nonstationary

CREWES Research Report — Volume 11 (1999)

wave-stepping scheme was applied (Margrave & Ferguson, 1997). This is because
when the z is sufficiently small, the equation (18) and (19) are equivalent to each
other.

STABILITY AND ACCURACY
Both equation (18) and (19) can be written in a generalized form as

),0,(),,( ωω =Ψ==Ψ zxLhzx h
(20)

where hL  is the extrapolation operator in NSPS or PSPI for the depth step of  h. The
expression of L for non-stationary phase shift is given by Margrave (1998). In
laterally inhomogeneous media, the implementation of these equations needs to be
done recursively, i.e. extrapolation depth h needs to divided into n small depths
(h=n∆z). Therefore, equation (20) can be written as

),,(),,( ω=Ψ=ω=Ψ ∆ 0zxLhzx n
z

(21)

where L∆z is the extrapolation operator for the depth equaling ∆z. The process of the
extrapolation is stable if the energy is conserved during the extrapolation. The energy
in the wavefield is proportional to the square of the amplitudes and therefore, the
stability can be expressed as

2n
z

2 0zxL0zx ||),,(||||),,(|| ω=Ψ≥ω=Ψ ∆
(22)

where ||.||2 denotes the 2-norm. Based on matrix algebra theory

22n
z

2n
z LL |||||||||||| Ψ≤Ψ ∆∆

(23)

and ||Ln
∆z||2≤ (max(σi))n, here σi denotes the singular value of the matrix L∆z.

Therefore, the process of extrapolation is said to be unconditionally stable when
max(σi)≤1.0.

Instability arises because when velocity is not constant, the formulae of the
stationary phase shift only satisfy the wave equation approximately. When ∆z chosen
improperly, the errors due to velocity gradients may interfere constructively to create
unphysical effects. Figure 3 shows the unphysical effects coming from four steps of
extrapolation with ∆z=50 m for the same previous model. The accuracy of the
extrapolation in laterally inhomogeneous media is also controlled by the extrapolation
distance. The more accurate the extrapolation, the more stable it is.
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Figure 3. The results of 200m extrapolation with 4 steps of ∆z=50 m by (a) PSPI and (b)
NSPS.

Instead of theoretic derivation for the choice of ∆z, we present a practical criterion
for the choice based on Fresnel resolution. The basic assumption is that the wavelet
from the secondary source expands outward with local constant velocities. Assuming
there are two closed secondary sources located at both sides of a velocity boundary,
when the wavelets from these sources expanding vertically to the new plane with ∆z,
phase difference between them is

)
21

(2
v

z
v

zf ∆−∆=∆Θ π
.

If ∆Θ is less than π/2, it should be beyond the spatial resolution based on Fresenel
zone concepts. Therefore, we choose

||
vf4

vvz 21

∆
≤∆

(24)

where f is the dominant or average frequency and ∆v=|v1-v2| is the maximum
velocity change of the neighbor grids in the layer, as the criteria for ∆z. In numerical
modeling tests, we found that the minimum extrapolation distance is limited by
discrete interval ∆x. The reason may because the velocity is smoothed after the
Fourier Transform.

Figure 4 shows the results with the same velocity model but in this case ∆z =10 m.
The first arrival of extrapolated wavefields match the travel time calculated by
solving the Eiknoal equation with finite differences (Vidale, 1988). Figure 5 shows
the results when extrapolating the wavefield back from the wavefield in figure 4. The
original point sources are well resolved.
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Figure 4. The results of 200m extrapolation with 20 steps of ∆z=10 m by (a) PSPI and (b)
NSPS. The solid lines indicate the travel time of the first arrival.

     

Figure 5. The result of -200m extrapolation with 20 steps of ∆z=-10m from the data in figure 4
by (a) PSPI and (b) NSPS.

CONCLUSIONS
 Wavefield extrapolation in laterally variable velocity structures can be calculated

by the recursive nonstationary phase shift method, which can be considered as the
limiting case of pseudospectral method applied to wavefield extrapolation. Like finite
differences, this method may take account of any velocity variation but can give
higher accuracy and can be more computationally efficient. Based on the strength of
the lateral velocity gradients, the extrapolating distance can be chosen adaptively.

The derivation of the equations presented above directly applies the pseudospectral
method to wave equation in discretized model and therefore, the local property of the
solution is easily understood by its physical interpretation. The step length chosen
based on Fresenel zone gives a practical criteria for choice of the ∆z.
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