
Software for physical modelling

CREWES Research Report — Volume 11 (1999)

Software for physical modelling survey design and
acquisition

Henry C. Bland and Paul R. MacDonald

INTRODUCTION
The elastic modelling system simulates real-world seismic surveys in the

laboratory. Models are typically constructed using materials of differing acoustic
velocities (Plexiglas, aluminium). Two transducers are moved about the surface of the
model by motorized arms running under computer control. One transducer operates as
a transmitter and the other transducer operates as a receiver. The received data trace is
recorded and stored on the computer in a manner that is identical to conventional
seismic recording.

The physical modelling system has evolved over a period of ten years. During this
time, its hardware has received incremental upgrades, but little work has gone into
software. During the summer of 1999, the authors developed new software with the
goal of improving the reliability of the system, adding a number of long-needed
features, and making the program expandable and maintainable. The culmination of
these efforts is a program for physical model survey design and acquisition called
"PUMA"1.

Figure 1. Transducers transmit and receive ultrasonic signals through a physical model
during a simulated 3-D seismic survey.

1 The name "PUMA" is purportedly an acronym for "Physical Ultrasonic Modelling Acquisition".

Bland and MacDonald

CREWES Research Report — Volume 11 (1999)

Figure 2.The physical modelling system consists of the modelling jig (left), the computer and
electronics systems (right). The configuration above shows a small water tank inserted into
the jig aperture to simulate marine surveys.

SYSTEM OVERVIEW
The physical modelling system is comprised of several components shown

schematically in Figure 3. A piezoelectric source transducer is excited by a digitally
generated waveform. The ultrasonic signal emitted from the source transducer travels
through the model, and reaches the receiving transducer. The receiving transducer
generates a very small electrical signal, which is digitised, processed (stacked and
filtered) and stored to disk. For each shot location and receiver location, the
controlling system must manipulate the modelling system to move the transducers
into new positions. A series of switches sense the position of the transducer actuating
mechanism, allowing its location to be determined at various stages of a survey
acquisition. A joystick allows an operator to interactively move the transducers to
calibrated locations prior starting a physical modelling survey.

Software for physical modelling

CREWES Research Report — Volume 11 (1999)

Figure 3. Schematic of the physical modelling.

Survey design
One simplifying feature of physical modelling surveys over real-world surveys is

that surveys can be designed without concern for land access, or surface features. As
a result, it is relatively easy to generate 2-D and 3-D surveys. Physical modelling
survey design and survey shooting are often performed in iterations – changing the
survey parameters slightly and observing the recorded data moments later. For this
reason, it made sense to integrate the survey design program directly into the
acquisition program.

The modelling systems is designed to perform both 2-D and 3-D surveys. Past
experience tells us that fixed offset surveys are of great utility, as a model can be
quickly surveyed and (without processing) structural features identified. With this in
mind, PUMA was written to generate 2-D and 3-D surveys with fixed offset
geometries as well as the more conventional variable-offset geometries. Figures 4 and
5 show examples of the user interface for survey design. The output from the survey
design module is a text file in a format reminiscent of SEG-P1 format (true SEG-P1
export is an available feature). Even though the survey design module is built-into the
program, there is no tie between the survey design component and the acquisition

Bland and MacDonald

CREWES Research Report — Volume 11 (1999)

component of PUMA. As a result, surveys can be imported from external survey
design applications should the need arise.

Figure 4. Survey design dialog for variable offset 2-D surveys.

Figure 5. Survey design dialog for variable offset 3-D surveys.

Software for physical modelling

CREWES Research Report — Volume 11 (1999)

Survey acquisition
The primary job for the software is to interact with all the different subsystems that

perform the survey. Table 1 details the different tasks that the software must perform
during acquisition.

Table 1. Tasks performed by the acquisition system during survey acquisition.

Emit source wavelet
Acquire received trace
Filter and stack received traces
Display received data on console
Save stacked traces to disk
Determine next X, Y, and Z position for source and receiver
Instruct motor controller to move motors
Monitor motor controller for progress and status
Obtain motion feedback from switches and sensors
Provide a status overview for operator

Some tasks, such as data display, stacking, and data saving, are limited in speed by
the computer (CPU and disk speed). Other tasks, such as moving motors and
acquiring data, are limited in speed by external hardware. Most importantly, many of
the tasks have prerequisites: correctly sequencing the tasks is always of utmost
importance. PUMA optimises the overall rate of acquisition by performing CPU
intensive tasks while waiting for external events to take place (e.g. stacking traces
while waiting for the transducers to be placed into position).

While PUMA is performing a survey, received data must be stacked, displayed
and stored. Since random noise is a large component of the received data, stacking
greatly improves signal quality. Unlike real-world acquisition, there is no cost
associated with repeating source points several times. The time-overhead for high-
fold stacking is negligible, as several hundred sources can be acquired within a
second. We have traditionally stacked 32 times at each source point, but may increase
this substantially now that the software can acquire and stack more quickly. After
acquiring and stacking traces, the traces are displayed on the screen for the operator
to view. Real-time display is important, as the operator must be able to see problems
such as poor transducer coupling, bad connections, and inadequate signal levels as
they arise. At the same time as data is displayed, it is stored to disk in SEG-Y format.

Diagnostics
One of the main flaws of the old physical modelling program was that it did not

include adequate diagnostic facilities. One very important goal of this project was to
provide a diagnostic module for each subsystem: the source wavelet generator, the
data acquisition system, the motor controller, and joystick. The source waveform
generator diagnostic module allows direct access to the waveform generator controls.
It lets one generate waveforms from a pre-set list (sine waves, square waves, triangle

Bland and MacDonald

CREWES Research Report — Volume 11 (1999)

waves) or from manual entry of sample values. The data acquisition diagnostic
module displays the raw data received from the acquisition system in real-time using
an oscilloscope-like display, and the motor controller diagnostic allows one to operate
any of the six positioning motors directly. Finally, a joystick / motor control system
diagnostic module allows one to interactively drive the transducers using the joystick
for control. These diagnostics are crucial to the system, as the system is complex, and
tricky to trouble-shoot without the aid of specifically designed software.

Figure 6. Diagnostic module for the data acquisition subsystem.

Figure 7. Diagnostic module for the source waveform generator.

Software for physical modelling

CREWES Research Report — Volume 11 (1999)

IMPLEMENTATION
The old version of the physical modelling control software was written in

Microsoft QuickBasic running under the MS-DOS operating system. This software
was plagued with problems resulting from memory limitations imposed by MS-DOS,
the lack of a graphical user interface, slow speed, and antiquated programming
models. In implementing PUMA, it was decided to use up-to-date programming
techniques and languages. Java was chosen because of its maintainability, rich library
of functions for graphics, it's user interface library, and its inherent support for
multithreaded coding. A three-layer structure was used in implementing the system.
The application is written primarily in Java, while access to hardware is obtained
through a middle layer written in C++. The middle layer provides a Java interface to
the Windows device drivers. It was necessary to write some device driver code to
allow access to custom hardware from within Microsoft Windows. This model
effectively isolates the application-layer code from the harder-to-maintain low-level
code.

Table 2. Implementation of a multi-layered programming model.

Layer Language Amount of
code

PUMA Application Java 98%
Java native interface to
Windows hardware

C++ 1%

Windows device driver C++ 1%

Multithreading
As mentioned earlier, PUMA simultaneously handles a large number of tasks

while acquiring a survey. Since many of these tasks contain delays based on external
hardware, CPU usage, and disk usage, optimum scheduling of the tasks is crucial in
order acquire data quickly. Execution speed is very important, since 3-D surveys can
contain millions of traces, and each trace must be acquired one-geophone-at-a-time.
Rather than explicitly code the task scheduling, we rely on Java's multithreading
capabilities to schedule the tasks for us. Each task is written in it's own thread, and
the competition for CPU time automatically sequences the threads in the optimal
fashion. Threads that wait for external events (such as a thread waiting for a motor to
reach its destination) are automatically suspended, while other CPU-intensive threads
get full-attention. Order-of-operation issues between threads are handled using Java's
built-in object locking mechanisms. Any thread that waits on another thread is
automatically removed from the execution queue. As a result, only those threads with
work to do will be executed. An additional thread takes care of user-interface
operations, allowing use of the user-interface (including survey design) while a
survey is being carried-out. Although there is some overhead in non-explicit coding
of task scheduling, the code is greatly simplified using a multithreaded approach.

Bland and MacDonald

CREWES Research Report — Volume 11 (1999)

RESULTS
The entire project, from design to working prototype took less than five person-

months to complete. This initial version of PUMA is now operational, and some
refinements are now underway. Specifically, PUMA is being modified to work with a
wider-bandwidth data acquisition subsystem. PUMA's interaction with position
sensing switches is being improved so that the system can confirm that the actuating
arms are correctly located during any portion in an acquisition.

One of the greatest concerns when implementing the system was that Java
wouldn't have the efficiency to operate the system with enough speed. Java has a
reputation of being a slow language/environment because it is not compiled into
machine code. Instead, java is compiled into a portable "byte code" which is then
interpreted by a second program (the Java Virtual Machine). We were pleasantly
surprised by the speed at which the program runs – the speed of execution is not
limited by the speed of Java code, but by the rate at which the motors operate. Even
more surprising is that the seismic traces can be drawn at an acceptably speedy rate,
and scrolling through seismic is as fast as any other C-coded program. Indeed the
slowest section of code is not the data acquisition, stacking or display, but the disk
output section. In order to create truly "standard" SEG-Y data files, data are written to
disk in non-native byte order (as required by the standard) using a very inefficient
(but portable) technique. This technique uses one "disk write" operation for every
four bytes of data. If execution speed ever becomes an issue, we may consider re-
writing this section of code for efficiency (possibly at the cost of portability).

CONCLUSION
The physical modelling software was been successfully replaced. The new

software supports a variety of new geometries, the ability to handle arbitrary
geometries, better acquisition quality control, and significantly easier operation. This
project was the first of its kind (within CREWES) to be written in Java. We are happy
with the results, both in terms of execution speed, and development time. It is our
hope that our choice of language will make this code expandable and maintainable for
the foreseeable future.

Software for physical modelling

CREWES Research Report — Volume 11 (1999)

APPENDIX A.
To best understand the features of PUMA, the menus and dialogs are presented in this
appendix.

MENU STRUCTURE

ACQUISITION PARAMETER DIALOGS

Bland and MacDonald

CREWES Research Report — Volume 11 (1999)

