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ABSTRACT
The Kirchhoff diffraction method is used to model physical measurements. This

method is based on the wave theory solution of the acoustic wave equation. The
acoustic response due to a boundary surface can be expressed as a convolution
integral of the source wavelet with an impulse response characterizing the geometry
of the boundary surface. The results indicate that the simulated data matches the
measurements.

INTRODUCTION
A physical seismic model is often used to assist with an understanding of real

world operations. Since the conditions of the physical experiment, (i.e. the physical
model parameters, source impulse, source-receiver geometries), are controlled, it is
useful to compare data from physical seismic models to numerical modeling
solutions. The numerical modeling that can successfully predict the physical model
data can be, in turn, a useful tool for enhancing real data interpretations.

During January 1999, a seismic physical model was created at CREWES for the
purpose of investigating the effects on seismic resolution of the waves diffracted from
edges. In real seismic data, characteristic signatures produced by diffracting edges
may indicate geologic faults and possible associated hydrocarbon traps (Kanasewich
& Phadke, 1988). Therefore, they have long been of interest in seismology.
Mathematical models to account for diffraction usually have been limited to acoustic
effects. The geometrical theory of diffraction (Keller, 1962; Kouyoumjian and
Pathak, 1974; Zhang et al., 1990) can be used to simulate the diffractions from
complicated diffracting geometries. This method solves the problems in the frequency
domain and often meets difficulties at and near shadow and reflection boundaries.
Based on Huygen's principle, the Kirchhoff diffraction method (e.g. Trory, 1970;
Berryhill, 1977) directly solves problems in the time domain. Because this method is
supported by wave theory it can avoid the difficulties of methods based on geometric
theory.

In this paper, the Kirchhoff diffraction method is used to produce synthetics for
comparison with the physical modeling data.

THE MODEL AND DATA

The physical model was made of acrylics and its volume is 5700 × 3550 × 500
mm3. The velocity of the material is 2750 m/s . Grooves were cut at the bottom with
the widths increasing from 1 mm to 10 mm. The height of the grooves is 5mm (figure
1). The zero-offset survey was taken at the middle of the top along a line
perpendicular to the grooves.
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Figure 1. Photograph of the physical model.       Figure 2. The physical modeling data.

Using a scaling factor of 1:10,000 for distance and time, and unity for velocity,
Figure 2 shows the physical modeling data with trace interval of 20 m (scaled) and
recording time interval of 0.001 second (scaled). The data contain two main features:
one is the reflection from the flat top between the groves and the bottom of the model,
and the other is diffractions from the edges of grooves. The diffractions in the data
blur the resolution of individual groves.

THE CHARACTERISTICS OF KIRCHHOFF DIFFRACTION METHOD
Based on the Kirchhoff approach, the solution to the acoustic wave equation for

zero-offset can be written as (Hilterman, 1970)
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where c represents the velocity , f a source wavelet, θ is the angle between the normal
to the surface n̂  and the direction of receiver location, r is the distance from a point
on the integral surface to the receiver and dA is integral element (Figure 3).

Figure 3. Geometry for the integral in the Kirchhoff diffraction method.

It is observed that Ω=θ ddAr
cos , i.e. the differential element of solid angle. The

angle Ω is a valid function of τ, cr2 /=τ  the two-way traveltime, defined to be zero
until some time 0τ=τ  at which the expanding wavefront first contacts A, and
increasing monotonically thereafter. Therefore, the variables in equation (1) may be
changed to be

T
im

e
(s

)

Distance (m)



Simulating physical modeling data

CREWES Research Report — Volume 11 (1999)

ττ
τττπ dd

d
dt
tdftfctp Ω−+−= ∫ ])()(2[2

1)(
(2)

By comparing the definition of a convolution
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equation (2) can be written as
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Using the relation 
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tdf )(*)()(*)( = , then we have (Berryhill, 1977)

)()()()( 0ttUtDtftp −∗=
(5)

where U denotes the step function and D(t) the normalized diffraction response
dependant upon the geometry of observation. Equation (1) shows that a diffraction
can be expressed as the result of a wavelet convolved with a diffraction response.
Therefore, the key to this method is to find the diffraction response D(t), which
depends upon the particular problem.

For the zero-offset case, the diffraction response operator, D, due to the
termination of a planer reflector can be calculated via

))]sin/()2'('[arctan(')'(
cos)'( 0002

0

2
00 θπ

θ ttttdt
d

tt
ttD +
+

=
(6)

where t'=t-t0 is time measured after the onset time t0 , θ0 is the angle between the
normal to the reflecting plane and ray path of the minimum travel time (Figure 3).
This operator alters the intrinsic shape of the wavelet, in addition to changing its
overall amplitudes. Calculation of D requires knowledge of only two parameters, i.e.
t0 and θ. In practical applications, D is evaluated numerically with t' taking values
that are multiples of a discrete time sample interval. The details of the derivation and
analysis of equation (6) can be found in Berryhill's paper (1977). Here, only the main
properties of the pulse responses for zero-offset seismic experiments are outlined as
follows:

a) Diffraction amplitudes are frequency dependent: high frequency pulses excite
less diffraction response than that of low frequency pulses, and the waveform changes
shape along a diffraction hyperbola because high frequency components die out first.

b) The maximum amplitude that a diffraction can attain is one half that of the
associated reflection. Maximum amplitude occurs where the diffraction meets the
reflection.
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c) Diffraction hyperbolae are divided into two regions in which the algebraic signs
of the amplitudes are opposed. The part of the hyperbola away from the associated
reflection has the same polarity as the reflection, while the part beneath the reflection
(if visible) has the opposite polarity.

Figure 4. Response from plane strip. Strip is parallel to y axis with edges distant x1 and x2

from the normal through source-receiver.

Equation (6) is for the calculation of diffraction from a single edge. It can also be
applied to more complicated 2D geometries with plane strips approximation. For each
plane strip the response operator can be written as

12)( DDVtDs ++=
(7)

where D1 and D2 are the responses from the edges at x coordinates equal to x1 and x2,
respectively (Figure 4), and V is the reflection from the reflector between x1  and x2.
Clearly, if x1=x2 the response is zero as it must be expected for a reflection from a
zero surface area. Figure 5 presents the seismic response calculated for four short
reflector segments. Each pattern is the sum of a reflection and two diffractions. This
figure addresses the question of how small a reflector can be distinguished by the
seismic method and may provide additional information about diffraction for seismic
data interpretation.

SIMULATING RESULTS
In practical applications of equation (5), D is evaluated numerically with t' taking

on values which are multiples of some discrete time sample interval. When θ0 is zero
degrees, D is a one sample spike whose magnitude should be exactly one-half.
However, numerical evaluations for θ0=0 may be difficult because of the singularity
at this point in equation (2). In stead of evaluating θ0=0, a small angle can be used as
an approximation.
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Figure 5. Combined reflection and diffraction response for four reflectors of varied lateral
extent.

In order to apply equation (7), the model was further simplified (Figure 6), where
the reflectors were composed of a discontinuous reflector that models the bottom of
the model and small reflectors that model the top of groves. Because of the zero-
offset experiment the effects from the sides of groves are neglected. With this
simplified model, equation (7) can be applied to each segment as a finite strip case
and then the total responses can be obtained by summing all of responses.

Figure 6. Schematic simplification of the model.

The source function used in the simulation is extracted directly from the recorded
reflection signal from the bottom of the model (Figure 7).
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Figure 7. The source function used
in the simulation. Figure 8. The simulated result.
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Assuming that both source and receiver signal have finite dimensions rather than a
point source, the averages of the results from four neighboring point sources and
receivers are used as the final simulated data. The simulated result is shown in figure
8, which is roughly comparable to the acquired physical modeling data. Comparing
this result with the measured data (Figures 9 and 10), except for some details they
match quite well.

Figure 9. The comparisons between the physical modeling data and simulated data.

DISCUSSIONS AND CONCLUSIONS
The Kirchhoff diffraction method was used for the simulation of physical

modeling data. This method has a simple formulation and gives an understandable
physical explanation of Huygen's principle. The result of simulation shows that the
Kirchhoff diffraction method can approximately predict the physical model
measurement and therefore, it can be used for further investigation of the effects of
diffractions.

The results show that the simulated data does not perfectly fit the measured data.
This may come from the far-field approximation in the theory and the model used in
the simulation may be over simplified. In the method, the source function is assumed
to be isotropic. However, the real source function may be directionally anisotropic,
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which may also lead to misfit between the simulated data and the physical modeling
data.

Figure 10. The comparisons between the physical modeling data (black) and simulated data
(gray).
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