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domain 
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ABSTRACT 
Predictive deconvolution has been predominantly used as a method for attenuating 

multiples. The inconsistency of vertical spacing and amplitude of a primary and its 
corresponding multiples hinders the feasibility of applying this method to shot 
gathers. Algorithms used to overcome this problem may select a new operator and 
gap length for each trace with increasing offset. An alternative, less tedious method is 
presented which maps the shot gather into a more suitable domain. This approach 
utilizes the invariability between spacing of multiples and primary reflections for a 
larger range of offsets in the radial domain. The results indicate better attenuation of 
multiples for shot gathers in the radial domain and less sensitivity of the choice of 
operator length and stability factor in predictive deconvolution. 

INTRODUCTION 
This project was initiated to improve a method of deconvolution for removing 

multiples from a shot gather in an efficient way. In 1980, Taner introduced multiple 
attenuation by employing the radial transform. Recent work by Lamont et al. (1999), 
improved the transform to accommodate the removal of multiples from a dipping sea 
floor. In this paper, flat sea floor multiples of synthetic and real shot gathers were 
considered. Predictive deconvolution was applied to the shot gathers in both the x-t 
and radial domains. The findings are compared, and the improved quality obtained 
from applying the radial transform surmised. Parameters including operator length, 
stability factor and choice of origin for the radial domain transform are considered. 
The result of the radial domain multiple attenuation technique is then compared to 
predictive deconvolution on a synthetic NMO corrected shot gather. 

THEORETICAL ASPECTS 

Predictive Deconvolution 
The purpose of predictive deconvolution is to estimate, or predict, the periodic 

portion of the input signal x(t) at some future time, namely x(t+α), where α is the 
number of time samples ahead to be predicted. To do this, one convolves the input 
data, x(t), with a filter, f(t), to obtain the output, g(t). Mathematically this is expressed 
as 

 
)(')()()( α+=τ=−τ∑ txgtftx
 (1) 

where it is hoped that g(t) is a time-advanced version of x(t). The filter is the 
unknown operator which will output an estimate of g(t). Since the estimate may not 
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be correct, an error series is defined as the difference between the true value at x(t+α) 
and the estimated value of x�(t+α). Hence for each predicted value, there is an 
associated error, expressed mathematically as 

 
)(')()( α+−α+=α+ε txtxt
. (2) 

This error represents the unpredictable part of the signal x(t). 

To compute the time-advanced version of the input signal, the correct filter is 
required. It is assumed that the input signal has a definite periodicity. Therefore the 
output is approximately a time-advanced version of the input (Peacock and Treitel, 
1969). Using least-squares filter theory, a set of normal equations are built to compute 
the filter. These equations have a general form of  

 

0 1 1 0 0

1 0 1 1

2 1

0 1 1

.

. .

. . . .
. . .

n

n n

a a a f g
a a f g
a a

a f g

−

− −

     
     
     
     =     
     
               

, (3) 

where the n by n matrix is the autocorrelation of the input (Toeplitz matrix), the 
vector g(t) is the crosscorrelation of the data and the desired output and the vector f(t) 
is the filter. In order to solve for the filter in equation (3), the autocorrelation of the 
input, and the positive lag coefficients of the crosscorrelation between the desired 
output and the input must be known. However as mentioned previously, the output is 
simply the time-advanced input signal, and thus the crosscorrelation of output and 
input is simply the autocorrelation of the input. The normal equations can now be 
expressed as 

 

0 1 1 0

11 0 2 1

11 2 0 1

.

.
.. . . . .

.

n

n

nn n n

aa a a f
aa a a f

aa a a f

α

α

α

−

+−

+ −− − −

    
    
    
    =     
    
              

, (4) 

where the only unknown is the filter, f(t). Now by a method of least squares, the filter 
is estimated, from which predictions can be made. The error series can be computed 
as a filter, or it can be obtained simply by subtracting the prediction from the input.  

This theory is applied in geophysics to remove undesired periodic events like 
multiples from seismic data or to shorten event wavelets by removing the predictable 
part. Though one can use prediction filtering in both the time and offset direction 
within a seismic trace panel, multiples are basically periodic only in time. In marine 
data, reflection energy is often trapped in the water layer, giving rise to multiple 
reflections. Thus in a marine trace, one can see the same event occurring at 
approximately constant time lags repeating down the length of the trace. It is this part 
of the trace that is predictable. The primary reflection events are assumed to be 
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random and therefore unpredictable. Since multiples are to be attenuated, it is the 
error series that is the signal of interest. 

There are details to be addressed in designing the correct prediction filter, 
especially when applied to a seismic signal. The first is the length of the input signal 
to be placed within the autocorrelation matrix. The seismic signal, a marine trace in 
this case, will contain a primary, the first occurrence of an actual event. It is copies of 
this primary which are to be predicted down the length of the trace. The length of the 
input signal should be long enough to contain all the information of the primary 
wavelet. This is referred to as the operator length since it is the data contained in this 
operator that will be predicted. The number of samples between the primary and the 
first copy determines the number of samples that the filter is to predict. This is 
referred to as the gap length. This method of determining operator and gap length can 
be used when the input signal is simple. When the signal is complicated, a larger 
number of points may be required to capture the information of the repeating energy. 
Complications arise in real data when the wavelet is not as well defined, as is 
generally the case with actual data. In the real data case, the wavelet may start at the 
time at which the primary occurs, yet still contain energy up to the onset of the first 
multiple. Here the wavelet will cover what would have been a null zone in a synthetic 
section. Other complications arise when prediction lag is not exact, and when 
multiple waveform differs from that of the primary. 

Another subtlety to consider is the addition of a white noise factor. A complete 
discussion of this factor is given by Treitel and Lines (1982). Essentially, the method 
of least squares yields a solution, which is a function that minimizes the error, that is 
to say, the difference between the output and the expected output. However, the 
inversion is sensitive to the presence of uncorrelated noise in the input and to the 
relative size of the elements in the inverted matrix. The white noise factor, or stability 
factor, is added to the zero lag of the autocorrelation to stabilize the inversion and 
effectively suppress the noise in the data. Mathematically, the prewhitened 
autocorrelation matrix is expressed as 

 
IA λ+

, (5) 
where A is the autocorrelation matrix and I is the identity matrix. Now the filter will 
also attempt to minimize the λI factor. The factor of λ will stabilize the calculation of 
A-1 eliminating the presence of the small eigenvalues of A. It is these small 
eigenvalues, which could potentially inflate noisy values and cause instabilities. In 
addition this factor of λ also turns out to be a constraint in the output noise power. By 
making λ a small positive number, the output can have a decreased amount of noise 
power. However, it also degrades the resolution of the deconvolution. Thus if λ is too 
small, the noise could dominate the output signal due to instabilities in the inversion. 
If the input data set is clean however, the deconvolution will have a high resolution 
transforming the wavelet into a spike. If λ is a relatively large number, the noise will 
be attenuated at the expense of a less accurate approximation of the desired output. 
Therefore, the addition of a white noise factor is a trade off between approximation 
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accuracy and the ability to attenuate noise and control instabilities. It is desirable to 
choose as small a value for the stability factor as possible to maximize resolution. 

The key to successful predictive deconvolution in shot gathers is that the 
predictability of trace events remains constant as the offset increases. Since the timing 
and amplitude relationships between the primary and multiples change with offset, 
the operators chosen for near zero offset predictive deconvolution become less 
appropriate with offset and the quality of the deconvolution falls off rapidly. The goal 
here is to map the shot gather into a more suitable environment in which the spacing 
between the primary and its corresponding multiples remains constant for a larger 
portion of the data. 

Radial Domain 
The radial domain is a simple mapping of the conventional x-t coordinate system 

into the radial (r-t) coordinate system. The transform follows the simple formulas 

 
tt ='
 (6a) 

 t
xv =

 (6b) 
where t� and v are the coordinates of the radial domain (Henley,1999). Essentially, 
data that lies on a specific slope (velocity) is mapped as a single trace in the radial 
domain as is shown in Figure 1.  

 Offset (meters) 
Radial trace 

Primaries 

Multiples 

seconds 

 

Figure 1. Shot gather with superimposed radial traces 

It turns out that the spacing between the primary and its corresponding multiples is 
constant for larger offsets in the radial domain. This can be seen in Figure 2 below. 
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Figure 2. Heuristic diagram displaying constant primary to multiple spacing in the radial 
domain (Taner, 1980). 

Through this diagram it is intuitively seen that a radial trace will contain a primary 
and its water borne multiples at constant time and distance increments. This 
corresponds to equal spacing in the radial domain. This is shown in Figure 3 below.  

 Offset (velocity) 

Primaries 

Multiples 

seconds 

 

Figure 3. Radial transform of a shot gather 
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Though the transform is simple, there are key points to consider. One of the most 
important is the location of the origin of the radial traces. To have an accurate 
velocity transform, the origin should be at (0,0) in the x-t domain. The radial trace, 
which passes through the origin and is asymptotic to the water bottom reflection, 
determines the maximum velocity for the radial mapping. However, the point (0,0) is 
not always the optimal position for real data. The reason is that there is usually no 
data recorded for zero or small offsets on marine surveys. Thus for purposes of 
predictive deconvolution, some low velocity radial traces will not contain a primary 
event, leaving nothing for the filter to predict. Hence, the origin of the radial 
transform should be moved along the offset axis to the offset of the first trace with 
data. The origin should however still lie on the asymptote of the water bottom 
reflection hyperbola. The origin must be moved down the time axis, as well, until it 
intersects the said asymptote. This tactic will ensure that the predictive deconvolution 
will have all the information it needs. The price paid is that the spacing between 
primary and multiples is no longer quite as perfect as for the (0,0) origin. The ability 
to move the r-t origin is an important extension of Taner�s application. 

Another practical consideration for the radial transform is that of aliasing. Because 
of the geometric distortion of the radial mapping, care must be taken to ensure 
sufficiently dense sampling in the radial domain to prevent aliasing from occurring. 
Techniques for doing this however are beyond the scope of the work presented here.  

ANALYSIS AND DISCUSSION OF EXAMPLES 

Synthetic Data 
The analysis begins with a noise free synthetic shot gather provided by Brian 

Hoffe of CREWES. The data is seen below in Figure 4.  

seconds

Primary 

Multiples 

 

Figure 4. Input synthetic shot with multiples in the x-t domain. Horizontal axis is in meters. 
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The radial transform of this data is shown in Figure 5. Notice how the spacing 
between the primary and the multiples are constant for a larger range of offsets 
(velocity). 

meters/second

seconds 

Primary 

Multiples 

 

Figure 5. Input synthetic shot with multiples in the r-t domain 

Notice that in Figures 4 and 5 there is a primary reflection at about 0.68 seconds. Its 
first water borne multiple occurs at approximately 0.82 seconds and with greater 
amplitude, a consequence of the modeling conditions. The simple predictive 
deconvolution assumptions are only appropriate for simple multiples like those 
generated by the sea floor. Thus for this report, this peg-leg multiple will be 
considered as a reflection event with the same properties as its primary. In the 
predictive deconvolution results we expect to see both events at 0.68 and 0.82 
seconds. 

Predictive Deconvolution in the x-t and r-t domain 
The predictive deconvolution will use the same parameters in both domains. In 

fact the deconvolution for the first trace in each domain should be identical (zero 
velocity corresponding to a vertical trace in the x-t domain from the origin). The 
parameters used are displayed in Table 1 below. 

Table 1.  Parameters used in predictive deconvolution 

Operator Length Gap Length Stability Factor 
40     0.08 seconds 50        0.1 seconds 10-2 

 
It is expected that in the x-t domain, as the offset increases, the quality of the 
deconvolution decreases. In this case the quality decreases very rapidly as the 
majority of the traces still contain multiples. Figure 6 shows the result of the 
deconvolution in the x-t domain.  
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 x-t domain predictive deconvolution

seconds 

Offset (meters) 
 

Figure 6. Predictive deconvolution result in the x-t domain. 

In the radial domain we can see that the deconvolution works for a greater number of 
radial offsets. This output is transformed back into the x-t domain to accurately 
compare the results. This is shown in the Figure 7.  
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 r-t domain predictive deconvolution 

seconds 

Offset (meters) 
 

Figure 7. Predictive deconvolution in the r-t domain (vertical axis is in seconds) 

Notice that the radial domain deconvolution does a significantly better job at farther 
offset, particularly on higher order multiples. Also, the two primaries are still seen on 
the figure at approximately 0.68 and 0.82 seconds. These results are very 
encouraging. 

PRACTICAL CONSIDERATIONS ON SYNTHETIC DATA 

Stability factor 
As mentioned before, the white noise factor affects the quality of predictive 

deconvolution yet it is also necessary to prevent instabilities. In this section the 
sensitivity of the stability factor is investigated on noise free synthetic data. For this 
data, the best results shown previously used a safe stability factor of 10-2. This factor 
will usually give adequate results for all data, yet not the best on any data. Figure 8 
shows the effects that a smaller stability factor (10-6) has on the synthetic data.  
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Offset (meters) 

Prediction error filter output 

 

Figure 8. r-t domain predictive deconvolution using white noise factor of 10-6 

The differences between the two white noise factors are not that noticeable. This is 
expected since the data being used is synthetic. However, it does seem that the 
resolution of the events is greater with a smaller stability factor, as was expected. The 
necessity for a larger white noise factor is usually only needed for data contaminated 
with noise. 

Change of radial origin 
The choice of origin in the radial domain affects the spacing between the primary 

and their corresponding multiples. This in turn affects the quality of the predictive 
deconvolution. The following figures are shown to illustrate this point. Figure 9, 
below, shows the input synthetic data with origins of (0,0) and (0,200) as opposed to 
the origin used to obtain the best results of radial domain predictive deconvolution 
seen previously in Figure 4. 
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Radial transform using origin of (0,0) 

 

Radial transform using origin of (0,200) 

 

Figure 9. Radial transform using different origins. Axes are seconds in the vertical axis and 
offset (meters/second) in the horizontal axis. 

From the plot on the left, it is immediately apparent that at small radial offsets, the 
primary does not exist and thus the filter will have nothing to predict. The plot on the 
right contains all the primaries, but the spacing between the primaries and the 
multiples is not constant. Figure 10a and 10b show the prediction error filter applied 
to the input using both origins seen in Figure 9. 

Prediction error Input Prediction 

 

Figure 10a. Predictive error filter applied to radial transforms with inappropriate origin of (0,0). 
Axes are in seconds along the vertical axis and meters along the horizontal axis. 
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 Input Prediction Prediction error 

 

Figure 10b. Predictive error filter applied to radial transforms with inappropriate origins of 
(0,200). Axes are seconds along the vertical axis and meters along the horizontal axis. 

The results given in the above figure clearly show that the quality of the filtering is 
sub par.  The origin of (0,0), as expected, does poorly at near offsets though it does 
quite well at farther offsets. The choice of origin of (0,200) has incorrect spacing as 
the offset increases and this is reflected in the output section. 

COMPARISON TO NMO OF X-T DATA 
Another way to improve the predictive deconvolution of a shot gather is to apply 

normal moveout (NMO) to the traces. This correction essentially flattens hyperbolic 
events described by a specific velocity. Unfortunately, hyperbolas that are not 
characterized by this velocity will not be flattened. Also, as the offset increases, with 
the application of NMO, an event will stretch, distorting its spectrum. Since the 
wavelet is no longer as compact at larger offsets as it is at small offsets, the operator 
length will not contain all of the wavelet that needs to be predicted at some time in 
the future. In this case, the prediction error will reflect the fact that although the 
events are equally spaced and the gap length can remain constant, it is the operator 
length that must change. Also to compensate for the modification of the wavelet, the 
stability factor may change due to the lower frequency content at larger offsets. 
Figure 11 shows the effects of the application of NMO. 
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Input Prediction Prediction error 

 

Figure 11. Application of NMO to x-t data with no stretch mute applied. Axes are time in 
seconds along the vertical axis and offset in meters on the horizontal axis. 

In Figure 11 it is clearly seen how applying NMO would adversely affect predictive 
deconvolution with an increase in offset. Still, the results should be better than simple 
x-t predictive deconvolution without NMO applied. Figure 12 shows the results of the 
application of predictive deconvolution on the NMO�d data and consequently having 
the NMO removed so that a comparison can be made. 
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 Prediction error Prediction Input 

 

Figure 12. Predictive deconvolution result to NMO�d data with no stretch mute applied. Axes 
are time along the vertical axis and meters along the horizontal axis. 

REAL DATA 
The testing is now extended to real data provided by Brian Hoffe of CREWES. 

The shot gather that will be tested is seen in Figure 13 in both the x-t and r-t domain. 

x-t domain 

 

r-t domain 

 

Figure 13. Real data represented in both the x-t and r-t domains. Figure on the left has a 
vertical axis of time in seconds and a horizontal axis of offset in meters. Figure on the right 
has a vertical axis of time in seconds and a horizontal axis of offset in meters/second. 
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Here we can see that the spacing between primary and multiples is constant at longer 
offsets in the radial domain.  

Predictive deconvolution in the x-t and r-t domain 
The parameters used in performing the predictive deconvolution are displayed in 

Table 2. 

Table 2. Parameters used on real data to perform predictive deconvolution. 

Operator length Gap length Stability factor 
100       0.2 seconds 1       0.002 seconds 10-2 

 

Looking at the results of the predictive deconvolution in Figures 14a and 14b, it is 
seen that the filtering works better in the radial domain. From the two figures, it is 
noticeable that the multiples are more highly attenuated in the r-t domain. An 
additional benefit is the attenuation of long-offset linear arrivals. 

 x-t predictive filtering 

 

Figure 14a. Result of predictive deconvolution in the x-t domain. Figure has axes of time in 
seconds along the vertical axis and meters along the horizontal axis.  
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r-t predictive filtering

Attenuated linear
arrivals

More visible
coherent reflection

 

Figure 14b. Results of predictive deconvolution in the r-t domain. Figure has axes of time in 
seconds along the vertical axis and a horizontal axis of offset in meters. 

PRACTICAL CONSIDERATIONS ON REAL DATA 

Operator length 
The choice of operator length is expected to be more important for real data than 

for synthetics. In this case, there seems to be a large amount of reverberation energy 
immediately after the first primary occurs which is at approximately 0.25 seconds. 
What is considered to be the first multiple occurs at around 0.45 seconds. Therefore 
when attempting to remove the reverberating energy the operator length will include 
both length operator and the gap as was suggested earlier. The results of using this 
operator were already shown in Figures 14a and 14b. Suppose now that the operator 
length did not take into account this reverberating energy between the primary and 
what is considered to be the first multiple. Using an operator length of 20 and a gap 
length of 80, the following results were achieved using predictive deconvolution in 
both the x-t and r-t domain.  
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Figure 15a. Predictive deconvolution results when using an operator length of 20 and a gap 
of 80 in the x-t domain. Axes are time in seconds along the vertical axis and offset in meters 
in the horizontal axis. 

 

Figure 15b. Predictive deconvolution results when using an operator length of 20 and a gap 
of 80 in the r-t domain. Axes are time in seconds in the vertical axis and offset in meters in 
the horizontal axis. 

As expected the filtering in the x-t domain is poor and though it appears the multiples 
are removed for short offsets, the reverberating energy remains. Interestingly, in the 
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filtering in the radial domain the reverberating energy is attenuated much better. This 
suggests that the choice of operator length is not as sensitive in the radial domain. 
This is not to say that the result is better than it was when using an operator length of 
100, but it is an encouraging and unexpected result that the predictive deconvolution 
in the radial domain is not as sensitive in the r-t domain as it is in the x-t domain. A 
possible reason is that everything within the radial domain becomes much more 
predictable, not just the multiples. Thus events, which are relatively random on the x-
t, become predictable in the r-t domain leading to better deconvolution with the 
ability to use shorter operators. Since the predictive deconvolution will not have to 
deal with as much �noise�, the operator length can simply be the number of samples 
describing the primary wavelet. 

Stability factor 
Now the results are compared to the predictive deconvolution results of 10-6. It is 

expected that the noise contaminates the signal in such a way that the prediction error 
filter will perform poorly. The results are shown in Figures 16a and 16b. 

 

Figure 16a. Predictive deconvolution results using a stability factor of 10-6 in the x-t domain. 
Axes are time in seconds in the vertical axis and offset in meters along the horizontal axis. 
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Figure 16b. Predictive deconvolution results using a stability factor of 10-6 in the r-t domain. 
Axes are time in seconds in the vertical axis and offset in meters along the horizontal axis. 

As expected the x-t domain result shows a section mostly dominated by noise. 
However, in the r-t domain, the section looks comparable to using a stability factor of 
10-2 as seen in Figure 14b. Again this is an unexpected result that may prove to be 
very useful. Since the stability factor is smaller, the recovered bandwidth of each 
event is much greater than for a larger factor. This is not ideal in the x-t domain 
because much of the extra bandwidth is dominated by noise. Hence, it can be 
concluded that the radial domain also allows for a smaller stability factor thus 
resulting in a more interpretable section. A possible reason for this follows the same 
line of reasoning as to why a smaller operator length can be used in the radial domain. 
The manner in which the radial domain organizes the data concentrates much of the 
coherent noise on a few specific radial traces allowing the predictive deconvolution to 
work mostly with cleaner traces. It is convenient to work in such a domain since the 
deconvolution will resolve the events better with a smaller stability factor. Though 
initially the motivation for using the radial domain was to keep the primary and 
multiple spacing constant, initial testing also shows that in the radial domain, 
predictive deconvolution is less sensitive to the choice of operator length and stability 
factor. 

CONCLUSION 
Predictive deconvolution can be a powerful tool, if used properly, in attenuating 

multiples. In a shot gather in the x-t domain, the increment spacing between the 
primary and its corresponding multiples is not constant. This means that more than 
one operator length must be used when applying predictive deconvolution and that 
predictive deconvolution itself fails as offset increases. Applying NMO to the section 
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does alleviate the problem of primary-multiple spacing yet introduces another 
problem. With the application of NMO, a stretch will occur, increasingly distorting 
the spectrum of the event with offset thus destroying the effectiveness of predictive 
deconvolution. Transforming the data into the radial domain reduces the extent of the 
problems encountered in the x-t domain. In the r-t domain, the primary-multiple 
timing is constant for a much larger portion of the data. The predictive deconvolution 
works much better and attenuates multiples for a larger range of effective offsets. In 
the radial domain, the wavelet describing the primary event does change but only 
significantly at large radial offsets. Were this the only benefit to predictive 
deconvolution in the radial domain, it would justify the use of predictive 
deconvolution solely in the r-t domain, but there are other unexpected benefits to 
working in the radial domain. Initial testing suggests that the choice of operator 
length and of stability factor is less sensitive in the radial domain than in the x-t 
domain and that both can be smaller than those used in the x-t domain. In terms of 
stability factor, the choice of a smaller factor in the r-t domain can lead to greater 
resolution of deconvolved reflections. For the choice of operator length, shorter 
operators can be used to more effectively predict multiples. A side benefit is the 
attenuation of linear noise that can occur simultaneously with multiple attenuation in 
the r-t domain. These unexpected results still require further testing yet at this point in 
time they reinforce the reasons for using predictive deconvolution in the radial 
domain. 
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