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Operator aliasing heuristics 

John C. Bancroft 

ABSTRACT 
Aliasing of migrated data can be caused by the input data, the migration algorithm, 

or the migration parameters.  This paper describes the aliasing caused by the 
Kirchhoff operator in a heuristic manner. 

START WITH A SIMPLE WAVELET 
The spectrum of the wavelet is zero at the lower frequencies; therefore, the sum of 

the samples will be zero.  
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Figure 1 

The following cartoon section (x, t) in Figure 2 contains one horizontal event with 
the wavelet described in Figure 1.  Assume the data is continuous (very small samples 
in x and t) with the black band representing the positive amplitudes and the gray 
bands the negative amplitudes. 
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Figure 2 

Figure 3 contains lines that intersect the event, with each containing a projection of 
the wavelet.  The summation of these projected wavelets will also be zero after 
crossing the event.  These lines will be used later to represent portions of diffraction 
curves as they cross the interface. 
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Figure 3 

THE MIGRATION OPERATOR 
After migration, a horizontal reflector should remain at the same location and have 

the same wavelet.  There should be no additional energy above or below the event.  
When the diffraction is below the event, there will be no energy summed.  An event 
above the diffraction will collect the energy in the projected wavelet that will sum to 
zero.  A diffraction whose apex is in the event will sum energy that does not cancel 
and will reconstruct the original event.  Note that we have assumed a continuous 
event that represents the wavelet at any intersection. 
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Figure 4. Continuum of traces 

SPATIALLY SAMPLE DATA 
Now, consider data that is spatially sampled with a visible space between the 

traces.  Figure 5 shows the energy of the event on these traces. 
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Figure 5.  Energy from the event confined to traces. 
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The diffractions A and B in Figure 5 also intersect the event but don�t pick up all 
the energy of the wavelet.  Diffraction A will only pick up the maximum peak energy 
as it crosses the event.  There are no other wavelet samples to cancel the summed 
energy.  This summed energy will be placed at the apex of the diffraction.  Other 
diffractions in the area of A will also pick up energy and produce an apparent event or 
noise well above the original event, i.e. aliased noise. 

Diffraction B has a shallower dip as it crosses the event and picks up energy from 
a number of traces.  If B crosses the event with enough trace intersections to represent 
the wavelet, then the sum will tend to zero.   

If there were more traces with shorter trace intervals, then it might be possible for 
the diffraction at A to sum over a number of traces and the aliased energy will be 
reduced or eliminated.  Consequently there is a relationship between the number of 
traces and the slope of the diffraction when it crosses the event. 

Lowering the frequency of the wavelet in Figure 6 allows diffraction A to sum to 
zero as the wavelet is defined along the dipping intersection as highlighted by the 
oval. 
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Figure 6.  Reduction of aliased energy by low pass filtering. 

This low pass filtering is accomplished by defining a filter that varies with the dip 
of the diffraction as illustrated in Figure 7.  The width of the diffraction illustrates the 
period or width of a filter that is required to lowpass filter the data below that part of 
the diffraction.  Now the summation across the event will tend to zero.  . 
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Figure 7. A diffraction dependent lowpass filter. 

Boxcar filter??? 
Sinx/x 
Triangle 
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Note that diffractions at different locations will have different slope when they 
intersect the same area of the event.  Consequently, the data at a given location must 
be filtered each time it is summed into a diffraction; a very computationally intensive 
process.  We call this diffraction filter the antialiasing filter (AAF). 

THE ALIASING EQUATION 
The cutoff frequency Fc of the antialiasing filter depends on the local dip on the 

diffraction θ, the trace spacing δx, and the velocity V according to equation (1),  

 θδ tan4 x
VFc =

. (1) 

THE FOURIER TRANSFORM DOMAIN 
We now consider the 2-D Fourier transform of the horizontal event as displayed in 

Figure 8.  The origin in this figure is the upper right corner, and the spatial Nyquist 
wavenumber is in the center.  This view allows evaluation of aliased energy as it 
crosses the Nyquist �boundary�.  

Assume δx = 25 m, δt = 0.004 ms, V = 3000 m/s, then δz = δt V/2 = 6 m.  The 
spatial-Nyquist wavenumber is kxn = 1/2δx = 0.0200m-1.  The depth-Nyquist 
wavenumber is kzn = 1/2δz = 0.084m-1  corresponding to a Nyquist frequency of 125 
Hz.  Figure 8 has been correctly scaled to these parameters to accurately define the 
angle of the dipping energy.  The horizontal energy is confined below the vertical 
axis below the origin. 
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Figure 8.  The Fourier transform of the horizontal event. 
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Let the diffraction be represented by a straight-line approximation in the time and 
Fourier transform domain of Figure 9 and 10. 

  

 

  

 

 

    a) Diffraction          b) linear diffraction    c) AAF linear diffraction 

Figure 9.  Diffraction a) in the time domain, b) linearized, and c) showing the period of the 
AAF�s 

Summing energy below the dip in the time domain is comparable to summing 
energy below the dip in the frequency domain.  The thicknesses of the lines in Figure 
9c represent the thickness of the AAF period.  (The larger the wavelet, the lower the 
cut-off frequency). 
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a) Aliased operator   b) Anti-aliased operator 

Figure 10.  Fourier transform domain showing the diffraction a) with aliased energy, and b) 
with the AAF�s applied to the aliased energy. 

In the transform domain, the unfiltered dips of the diffraction extend to the 
maximum frequency.  The steeper dips are aliased as illustrated in Figure 10a as they 
cross the spatial Nyquist line in the center of the figure.  The steeper dips, (light gray 
and dashed) extend beyond the sides of the figure and re-enter on the other side 
(wrap-around).  These aliased parts of the diffraction will pick up zero-dip energy and 
will place it at the apex of the diffraction, a point above the actual event. 

Cut-off 
frequency 
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A dip dependent high-cut filter that is applied to the aliased dips could prevent 
aliasing as illustrated in Figure 11b.  These frequency domain filters are comparable 
to the filters in Figure 9c. 

The above illustrations only used zero-dip data.  Normal data has many more dips 
and their energy would also be picked up by the aliased diffraction. 

One efficient approximation to the AAF divides the slopes of the diffractions into 
segments as illustrated again in Figure 11.   

 

 

Figure 11.  Section with horizontal events with a linearized diffraction. 

The input data may be high-cut filtered a number of times, corresponding to the 
number of linear dip segments on the diffraction, three in Figure 11, giving the three 
filtered sections in Figure 12. 

 

  

 

  

 

 

a)                                           b)                                            c) 

Figure 12.  Sections filtered for a) horizontal dips, b) intermediate dips, and c) large dips. 

 

  

 

  

 

 

a)                                           b)                                            c) 

Figure 13.  Portions of the sections that contribute to the summed energy in the diffraction. 

When summing the energy under the diffraction, the algorithm defines a dip range, 
then goes to the appropriate filtered section where it then picks up the appropriate 
energy as illustrated in Figure 13.  Note the low frequency in the lower event of (c).  
From five to twenty-five filtered sections may be used in practical implementations.  
The computation and storage of this data may be expensive. 
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No AAF dip filter is actually required when the Kirchhoff operator dip is below a 
defined value (Figure 12a).  That value is calculated using equation (1). 

COMMENTS AND CONCLUSIONS 
The AAF is computationally expensive and there are many approximations and 

shortcuts to reduce this expense.  Quite often the AAF filter is completely ignored 
and may create excessive noise.  Choice of an AAF may be a compromise between: 

• acceptable noise, 

• frequency content, and 

• energy content of the dipping events. 

APPENDIX 
Figure A1 has been included to illustrate the exclusion and inclusion of the AAF.  

The left side of the figure had the AAF�s turned off and the resulting aliased noise can 
be observed.  This noised is removed from the right side of the section when the 
AAF�s are turned on.   

 

Figure A1.  A Kirchhoff migration with no AAF on the left side.  An AAF filter was used to 
produce the right side of the section.   

The AAF�s used on the right side in this example used computationally intensive 
sinx/x filters and the processing required twenty times the processing time as the left 
side of the section.  Box car and triangular AAF�s only required 3 times the 
processing time, but attenuated more energy on the steeper dips. 

Another interesting feature of Figure A1 is the amplitude of the steeply dipping 
event on the left side of the section.  The energy of this event, (on the input section), 
is aliased and this aliased energy is picked up by the aliased diffraction operator, 
which then produces aliased migrated energy.  (The comparable dip on the right side 
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contains un-aliased energy with a sharp cutoff at the Nyquist boundary.)  Use of the 
AAF�s becomes a choice between aliased noise, frequency content, and processing 
time.   

The interpolation of traces reduces the size of δx allowing the Nyquist frequencies 
of the AAF�s to be increased, and thus reducing the amount of aliasing.  Optimally, 
the trace spacing can be chosen to allow all dips to a maximum of 45 degrees (all 
input data to migration), to be migrated without AAF�s. 


