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Finite-difference anisotropic traveltimes and raypaths 

Marco A. Perez and John C. Bancroft 

ABSTRACT 

Traveltimes are calculated using finite-difference solutions to the eikonal 
equation. The scheme presented computes traveltimes based on a finite-difference 
approximation to the eikonal equation for transversely isotropic (TI) and isotropic 
media. The method expands along wavefronts, following minimum traveltimes to 
honor causality. A technique for determining raypaths using the reciprocity principle 
is also presented. The proposed methods are valid for weak to moderate levels of 
anisotropy as defined by Thomsen’s parameters.  

INTRODUCTION 

Both seismic imaging and inversion techniques are highly dependent upon the 
computation of accurate traveltimes of a geologic model. There are two basic 
methods that are commonly used to estimate traveltimes: raytracing and finite-
difference approximations to the eikonal equation. Raytracing techniques are 
accurate and used quite frequently in the calculation of traveltimes, however they are 
unable to trace through shadow zones and locate true minimum traveltimes (Vidale, 
1988). The alternative method is the finite-difference solution to the eikonal equation 
alleviating problems encountered in raytracing by calculating traveltimes at every 
grid point. However they can break down when encountering harsh velocity 
contrasts. This paper presents a 2-D, finite-difference, traveltime and ray-path 
calculator for TI media that can be employed in Kirchhoff migration and seismic 
tomography.  

Vidale first introduced a finite-difference solution to the eikonal equation in 1988. 

However, this algorithm could not handle velocity contrasts greater than 2
1

2 >V
V  

(Qin et al, 1992). Van Trier and Symes (1991), Podvin and Lecomte (1991), and Qin 
et al. (1992) subsequently modified this algorithm using different techniques 
attempting to honor causality in isotropic media. By honouring causality, these 
methods were able to overcome some of the velocity contrast problems encountered 
by Vidale as well as increasing the computation’s accuracy. Dellinger (1991), Eaton 
(1993), and Lecomte (1993) extended the causal algorithms to address anisotropy. 
The scheme proposed in this paper customizes the expanding wavefront technique 
proposed by Qin et al. for a square-grid design. Eaton’s hexagonal-grid method is 
similar to this scheme, but uses the elastic stiffness tensor to define anisotropy as 
opposed to the Thomsen parameters employed in this method. The proposed 
technique also exploits Huygens principle to account for refracted travel paths. The 
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ray paths for source-scatterpoint pairs are calculated based on the method described 
by Matsuoka and Ezaka (1992) and Asakawa and Kawanaka (1993). 

THEORY 

The proposed technique uses the algorithm proposed by Qin et al. that attempts to 
honour causality by expanding wavefronts along minimum traveltimes. Anisotropy is 
introduced by considering Thomsen’s (1986) anisotropic parameters (ε,δ, γ, α0, β0), 
to be constant in each cell. Assuming plane-wave propagation, it follows that the 
angle dependent phase velocity, V(θ), can be computed once the unknown angle is 
determined. Once the phase velocity is defined, traveltimes can be estimated using 
the stencils originally defined by Vidale (1988). 

Transverse isotropy 

All media can be described by their appropriate elastic parameters. Isotropic 
media has two independent parameters, C11 and C44 that control P- and S-wave 
velocity. Three additional elastic parameters are required to define transversely 
isotropic media, C13, C66, and C33. Adopting the Voigt recipe, TI media is represented 
in matrix form as  
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Thomsen combines these elastic parameters to define a new set of parameters so 
as to determine their physical significance. P-wave propagation uses four of these 
parameters: 

 ρα 110 C=  (2) 

 ρβ 440 C= , (3) 
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The first two parameters are the vertical P- and S-wave velocities while the last 
two parameters are a linear combination of the elastic constants. The parameter ε, 
controls the ratio between horizontal and vertical velocity while δ controls the near 
vertical anisotropy (Thomsen, 1986). 

Wavefront propagation reflects the differences in elastic parameters between 
anisotropic an isotropic media. The raypath for anisotropic media is not orthogonal to 
the wavefront as it is for isotropic media is one of these differences. 

φθ
Isotropic

Anisotropic

φθ
Isotropic

Anisotropic

 

FIG. 1. Figure illustrating the difference between the group angle (φ) and the phase angle (θ). 
Finely dotted line is the transversely isotropic wavefront while the coarsely dotted line is 
isotropic. 

Figure 1 shows two different paths taken to arrive at a single point. The path normal 
to the wavefront defines the phase velocity while the other path defines the group 
velocity. 

The phase velocity will be used in determining traveltimes since the finite-
difference solution to the eikonal equation assumes plane wave propagation. The 
phase velocity for transversely isotropic media using Thomsen’s parameters is given 
by 

 ( ) ( )[ ]θθεαθ *22
0

2 sin1 DVP ++=  (6) 

where 
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and 
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Eikonal equation 

The foundation of the traveltime method is the based on a finite-difference 
solution to the eikonal equation  
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It is used as an approximation in calculating the traveltime through isotropic media 
given an appropriately defined velocity function. For anisotropic media, there is no 
succinct form of the eikonal equation. Instead, for the general anisotropic case, one 
must solve a sixth-order partial differential equation for τ, 

 0det 2 =− ikljijkl vnnC δρ  (10) 

where Cijkl is the elastic modulus tensor, n is the directional cosine of the wavefront 
normal, ρ is density and v is the wavefront normal velocity (Eaton, 1993). For the 
transversely isotropic case, the analytic solution is known for velocity and can be 
substituted into the isotropic eikonal equation giving the approximation 
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where velocity is a function of the propagation angle, θ.  

Wavefront expansion stencils 

The anisotropic modifications to the Qin et al scheme consist of determining the 
wavefront normal propagation direction. There are two stencils used, each of which 
require knowledge of the propagation direction. The first stencil uses three points of a 
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cell to determine the fourth. The schematic diagram in Figure 2 shows how this is 
accomplished.  
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FIG. 2. Figure showing geometry for plane-wave angle determination. The variable h denotes 
the cell size, θ denotes the angle of propagation and t0, t1, t2 denote the known traveltimes 
with t0 < t1 < t2. 

Given times t0, t1 and t2 the slope of the line normal to the plane waves is 
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The arctangent of the slope is the propagation angle, thus establishing the velocity 
through which the cell is traversed. This velocity is then used in the extrapolation 
equation  

 ( )( ) ( )2
12

2
03 2 tthstt −−+= θ  (13) 

defined by Vidale (1988) to calculate the traveltime to the unknown point. 

In cases where the points required to use equation (13) do not exist, a scheme 
based on Huygen’s principle is used. To determine the traveltime to the unknown 
point shown in Figure 3, traveltimes are interpolated between t1 and t2. 
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FIG. 3. Secondary method used to calculate traveltimes. Given the known traveltimes of t0, 
t1, and t2, intermediate traveltimes are determined via interpolation. Based on the location of 
the interpolated traveltimes, phase angles and traveltimes are computed. The minimum 
traveltime is kept within the estimation zone since it corresponds to the first arrival. 

The phase angle of the plane wave is easily calculated since the positions of the 
points are known. The time to the unknown point is calculated using 

 ( )ip

i
ii V
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where hi is the distance from the ith interpolated point to the unknown point and Vi is 
the angle dependent velocity from the ith known point to the unknown point t3. The 
minimum traveltime is chosen as the first arrival. The combined application of the 
stencils shown allows for the traveltime calculation of all grid points. 

Wavefront expansion scheme 

The traveltime method attempts to follow the manner in which a wavefront would 
expand. In general, the points on a grid are divided into three groups: accepted points, 
estimated points, and empty points. The accepted points are causally calculated 
traveltimes, the estimated points are traveltime estimates based on the accepted 
points and the empty points are those that have not come into contact with the 
computational front. The traveltimes of points surrounding the accepted points are 
estimated and the estimated point with the minimum traveltime becomes accepted. 
This process is repeated until all points in the grid have accepted traveltimes. In this 
way computation follows the wavefront expansion. 

The expansion scheme begins with a source point (S), designated as an accepted 
point. Initially, Vidale’s algorithm is used to calculate the horizontal and vertical grid 
points (A, B, C, D in Figure 4) surrounding the source. This method assumes that the 
plane-wave propagation angles are 0° and 90° with respect to vertical. Thomsen’s 
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phase velocity (V(θ)) equation is used to calculate the velocity at both propagation 
angles.  

0°°°° 

90°°°° 
S B 

A 

C 

D 

 

FIG. 4. Determination wavefront propagation angle from three known traveltime points which 
determines the angle dependent phase velocity. 

The remaining points are calculated using equation (13). Given three computed 
traveltimes at points A, B, and S, the angle of propagation within the cell is 
determined. Thomsen’s V(θ) is used in Vidale’s approximation of the eikonal 
equation to calculate the traveltime to point a. The same procedure is followed to 
compute traveltimes at point’s b, c, and d.  
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FIG. 5. Initial estimation points calculated using Vidale’s plane-wave equation (13). 

After this initial zone is computed, the minimum becomes an accepted point and a 
new estimation zone is constructed which surrounds the accepted points. The new 
estimation points are computed using the two stencils previously defined. From the 
new estimation zone, the minimum again becomes accepted and the process of 
constructing an estimation zone and choosing the minimum is repeated until all grid 
points become accepted points.  
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Raypath determination 

The method proposed for approximating raypaths is based on the principle of 
reciprocity. This principle states that a ray follows the minimum summed traveltime 
path of the backward and forward propagation. Forward propagation consists of the 
traveltime from source to receiver while backward propagation is from receiver to the 
source. The previously described finite-difference method is used to solve for the 
forward propagating traveltimes. However, instead of computing a separate 
traveltime map for the receiver, the receiver is backward propagated to the source 
location using the traveltimes found from forward propagation. Within an isotropic 
cell, the location of the minimum summed traveltime of the corresponding source-
receiver pair is established by the intersection of the normal to the plane waves, V(θ), 
and the cell boundary. The direction of the plane waves is computed using the 
forward propagation traveltimes and equation (14). This minimum is the new 
receiver location for the next cell (Figure 6). The receiver is backward propagated 
until it is collocated with the source. 

  

intercept point 

Receiver location 

θ V(θ) 

 
FIG. 6. The backward propagation method locates the intercept point between the phase 
velocity and the cell boundary to define the new receiver location for the next cell in isotropic 
media. 

In anisotropic media, the raypath is not normal to the wavefronts (Figure 1). 
However, the ray angle (φ) can be computed from the phase angle (θ) and the known 
anisotropic parameters within the cell. Equations have been derived showing the 
relationship between group and phase angle (Brown et al, 1991). 
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Using the ray direction found by the ray angle, the intercept at the cell boundary 
can be determined. 
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FIG. 7. The phase angle (θ) for an anisotropic cell can be estimated from three known 
traveltime grid nodes. The ray angle (φ) is then determined from the phase angle and 
anisotropy parameters. The intercept point is found at the intersection of V(φ) and the cell 
boundary.  

As well as determining the intersection point from the ray angle, the minimum 
summed traveltime is also compared to the rays that travel along the cell boundary. 
These rays correspond to the refracted part of the wavefront. The minimum summed 
traveltime of the refracted rays and the ray angle corresponds to the appropriate ray-
path leading back to the source. 

In backward propagating the receiver to the source, it is assumed that the 
traveltimes using the group and phase velocities are equivalent. For plane-wave 
propagation, it can be shown that using the group or phase velocity results in the 
same traveltime.  
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FIG. 8. Reconstruction of an anisotropic plane wave from secondary sources. Both group 
and phase velocities yield the same traveltime to the second plane wave. 

In Figure 8, each circle represents a Huygen secondary point source of the wavefront. 
Each secondary source emits a wave defined by the group velocity that interferes 
constructively along the next plane wave shown. The intersection of the second plane 
wave and the secondary source wavelets show that the time required to reach the 
second plane wave can be computed by either using the group or phase velocity.  
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RESULTS 

The traveltime scheme is tested on a simple homogeneous transversely isotropic 
velocity model. The model size contains 2500 cells each with dimensions of 10 
metres. The following parameters were used to test traveltime accuracy 

 α0 β0 δ ε 

Model 1 

Weak anisotropy 

3000 
m/s 

2000 
m/s 

0.05 0.1 

Model 2 

Moderate anisotropy 

3000 
m/s 

2000 
m/s 

0.2 0.2 

Table 1. Parameters used to test finite-difference traveltime scheme 

 Figure 9 shows the traveltime contours for the weakly transversely isotropic 
medium.  

 

FIG. 9. Traveltime contours for a weakly anisotropic medium. Traveltime contour have units 
of seconds. 

The error associated with this model, is seen in Figure 10. It follows that because the 
scheme is based on a plane wave approximation, areas along the wavefront with a 
large amount of curvature will not be as accurate. The asymmetry in the error plot 
also shows that there is anisotropy present within the model. 
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FIG. 10. Traveltime errors for weakly anisotropic medium whose contours are shown in 
Figure 9. Error bar has units of 10-4 seconds 

 

Figure 11 shows the raypaths determined from the traveltimes shown in Figure 9. In 
anisotropic media, raypaths are straight and are correctly displayed in the figure 
below. The analytical rays are superimposed as a comparison.  

 

 

FIG. 11. Raypaths calculated using traveltime contours for a weakly anisotropic medium. 
Analytical raypaths are superimposed.  
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FIG. 12. Traveltime contours for a moderately anisotropic medium. 

Figure 12 shows the traveltime contours for a moderate transversely isotropic 
medium.  

Figure 13 shows the corresponding error. Notice that the amount of error has 
increased. This is a result of the wavefront curvature. In homogeneous isotropic 
media the wavefront is a part of a circle. In anisotropic media the wavefront will 
contain more plane like sections as well as areas with more curvature than there 
would exist in isotropic media. The error plot reflects this with the largest amount of 
error showing the part of the wavefront containing the largest amount of curvature.  

 

FIG. 13. Traveltime errors for moderately anisotropic medium whose contours are shown in 
Figure 12. Error bar has units of 10-3 seconds. 
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Figure 14 shows the raypaths for the moderate transversely isotropic medium. The 
analytical raypaths are plotted against the calculated raypaths for comparison.  

 

FIG. 14. Raypaths calculated using traveltime contours for a moderately anisotropic medium. 
Analytical raypaths are superimposed. 

As can easily be seen, the left ray-path is less accurate than the right ray-path. This is 
counterintuitive since Figure 13 shows that the traveltimes of the latter raypath are 
less accurate. It follows that the reciprocity-based ray-path estimate is limited by the 
accuracy of forward traveltimes. Given that the plane waves cannot approximate a 
curved wavefront, it is expected that as the ray approaches the source, the quality of 
plane-wave estimate decreases. This is seen on the poorly approximated ray-path. 
Figure (15) shows how discretizing the wavefront as plane waves affects the 
raypaths. 

ta
tb

tc tb

Intercept point

1−=m

5.1−=m

tetd

Origin

source

ta
tb

tc tb

Intercept point

1−=m

5.1−=m

tetd

Origin

source  

FIG. 15. Schematic illustrating how as the ray-path approaches the source of the plane 
waves, the ray-path approximation decreases. 
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However, it is not simply the traveltimes that determines the amount of ray-path 
error. The change in estimated ray-path curvature with respect to the actual change in 
ray-path curvature. In Figure 14, there is an estimated amount of ray-path curvature 
that does not exist. As a result, the ray-path estimation is incorrect. 

The four following figures use the same model parameters defined in Table 2. 

 α0 β0 δ ε 

Layer 1 4000 m/s 2000 m/s 0.0 0.0 

Layer 2 3000 m/s 1500 m/s 0.2 0.2 

Table 2. Parameter for 2-layer model. 

Figure 16 shows the difference in raypaths when assuming isotropic media versus 
TI media. The traveltime contours were calculated using the correct anisotropic 
parameters. Both raypaths were calculated from the anisotropic traveltime contours.  

 

FIG. 16. Figure illustrating differences between the calculated isotropic and anisotropic 
raypaths using anisotropic traveltimes. Model parameters are seen in table 2. 

The difference between the rays resides in deciding whether the traveltime contours 
are isotropic or anisotropic. The ray on the right assumes isotropic traveltimes and 
reflects this assumption since it is perpendicular to the wavefront. The left ray 
assumes TI media. Both raypaths have the same endpoints; however, the path taken is 
quite different. These differences can impact tomographic velocity analysis results. 

The next three figures show how raypaths can be determined for a number of 
different acquisition geometries. Figure 17 displays VSP acquisition geometry, 
Figure 18 displays crosswell geometry, and Figure 19 displays a common reflection 
survey. 
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FIG. 17. VSP acquisition geometry 

 

FIG. 18. Crosswell acquisition geometry 
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FIG. 19. Reflection survey acquisition geometry 

These plots show the versatility of the method making the method simple to use for a 
wide range of applications.  

CONCLUSIONS 

The method presented is robust and efficient allowing for a wide range of 
applications. The technique is valid only for weak to moderate amounts of anisotropy 
and only calculates first arrivals. The accuracy of the algorithm is highest for plane 
waves and lowest when calculating traveltimes for wavefronts with a large amount of 
curvature.  

Raypaths are determined based on the principle of reciprocity. Using the 
traveltime maps computed, the receiver is backward propagated to the source 
location. Raypaths are as accurate as the computed traveltimes. Since plane waves 
are used to approximate a curved wavefront, the raypaths calculated based on these 
assumptions exhibit errors when the approximation is a poor one. Because of the 
discrete nature of the calculation as the receiver approaches the source the quality of 
ray-path estimation decreases.  

ACKNOWLEDGEMENTS 

The authors would like to acknowledge the CREWES sponsors. The authors 
would also like to thank Jim Brown, Shauna Oppert and Pat Daley for useful 
discussions. 



TI traveltimes and raypaths 

 CREWES Research Report � Volume 13 (2001) 461 

REFERENCES 

Asakawa, E. and Kawanaka, T., 1993. Seismic raytracing using linear traveltime interpolation: 
Geophysical Prospecting, 41, 99-111. 

Brown, R.J., Lawton, D.C., and Cheadle, S.P., 1991. Scaled physical modelling of anisotropic wave 
propagation: multioffset profiles over and orthorhombic medium: Geophys. J. Int. 107, 101-
111. 

Dellinger, J., 1991. Anisotropic finite-difference traveltimes: Soc. Expl. Geophys., 61st Annual 
Meeting. 

Eaton, D.W.S., 1992. Finite-difference traveltime calculation for anisotropic media: Geophys. J. Int. 
114, 273-280. 

Lecomte, I., 1993. Finite difference calculation of first traveltimes in anisotropic media: Geophys. J. 
Int., 113, 318-342. 

Matsuoka, T. and Ezaka, T., 1992. Raytracing using reciprocity: Geophysics, 57, 326-333. 
Perez, M.A. and Bancroft, J.C., 2000, Traveltime computation through isotropic media via the eikonal 

equation, CREWES Research Report 12, 181-200. 
Podvin, P. and Lecomte, I., 1991. Finite-difference computation of traveltimes in very contrasted 

velocity models: a massively parallel approach and its associated tools: Geophys. J. Int., 105, 
271-284. 

Qin, F., Luo, Y.,K.B. Cai, W., and Schuster, G.T., 1992. Finite-difference solution to the eikonal 
equation along expanding wavefronts: Geophysics, 57, 478-487.  

Thomsen, L. 1986. Weak elastic anisotropy: Geophysics, 51, 1954-1966. 
Van Trier, J. and Symes, W.W., 1991. Upwind finite-difference calculation of traveltimes, Geophysics: 

56, 812-821. 
Vidale, J., 1988, Finite-difference calculation of traveltimes: Bull. Seis. Soc. Am., 78, 2602-2076. 


