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Porosity Bayesian inference from multiple well-log data 

Luiz Lucchesi Loures 

ABSTRACT 
This paper reports on an inversion procedure for porosity estimation and uncertainty 

analysis in well locations from a series of well-logs consisting of neutron, sonic 
(compression and shear wave) and density logs. The inversion procedure is based on the 
Bayesian methodology of inference. The inversion formulation considers log data 
uncertainties and information from rock physics, which include the effects of clay content 
and pressure. The main goal of this methodology is to reduce the uncertainties associated 
with each type of well-log, within the estimated porosity model. 

The Bayesian formulation developed assumes that all uncertainties can be described 
by Gaussian pdfs and we consider the variances of the well-log datasets to be unknown 
parameters. The posterior pdf is marginalized for the variances and the final posterior pdf 
is one for the interval porosity. The methodology is implemented using a moving 
window, which computes one posterior of the interval porosity for each interval of the 
discrete well.  

Examples with synthetic data are produced to show how this methodology works. 
Tests performed with different well-log combinations have provided a way to analyze the 
contribution of each type of log data towards increased reliability of the estimated 
porosity. Tests with a real dataset are presented. The results of these tests are compared 
with a porosity model derived from laboratory experiments on a core sample. 

INTRODUCTION 

Determination of porosity distribution in a reservoir is usually preceded by porosity 
determination in well locations. In this procedure the interpreter relied on both well-log 
data and core measurements. The interval porosity along the well is derived, after suitable 
corrections, from well-log data, such as a neutron log, sonic logs (compression and shear 
waves), density log or a combination of those. The main problem with these approaches 
is that they fail to properly treat the uncertainties associated with each type of log. For 
example, the neutron porosity log is derived from a nuclear tool, which measures the 
amount of hydrogen contained in the formation. The amount of hydrogen is not 
constrained by pore volume alone. The presence of clay and the type of fluid strongly 
influence the hydrogen count and, as a result, a bias in the porosity values is introduced. 
In order to avoid the bias, knowledge of rock matrix and pore fluid types is required, to 
allow for proper calibration or correction of porosity values. A similar effect is found 
when the porosity is obtained from other types of well-log. For example, in the case of 
porosity determination from sonic or density logs the main problem is the effect derived 
from the mud cake. Calibrations are made to compensate this effect and the uncertainty 
associated with the calibration  is stronger in the case of mud cake heterogeneous width.  

In this paper, porosity determination along the well is addressed as an inference 
problem and independent well-log datasets are integrated in a full formulation. The 
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solution follows the Bayesian methodology of inference, as presented in Jeffreys (1939). 
The Bayesian approach focuses on obtaining a probability density function for the 
parameter under investigation, named posterior distribution, assimilating two kinds of 
information: information on data-fit and prior information on models. Once this goal is 
achieved, all inferences can be obtained from the posterior by computing statistics 
relative to individual parameters (e.g., marginal distributions). Previous geophysical 
applications of Bayesian inference are usually based on multidimensional Gaussian 
distributions as, for example, Duijndam (1988) and Gouveia and Scales (1998). These 
works reduce to finding the posterior mean and covariance, both of which can be 
computed by using standard least-squares methods. 

The final result is a marginal distribution for porosity at each well interval based on a 
series of logs (porosity, sonic for compression wave, sonic for shear wave, and density) 
and petrophysical models. Following the Bayesian methodology of inference, the 
available information (from datasets) is treated as probability density functions (pdf). 
Since the final result is represented as pdfs, the proposed methodology provides not only 
the porosity estimates, but also the uncertainty associated with the estimates. The 
contribution of each piece of information towards increasing the estimates� reliability can 
be measured. Another advantage of this approach is that it provides a unified framework 
for reservoir characterization by including inversion of surface seismic data with 
assessment of the uncertainties associated with the well-log data and its effect on a 
porosity model obtained within an inter well space. 

The well-logs are the effect of several petrophysical properties, mainly porosity, 
mineral composition, fluid properties, saturation, pressure and temperature. It is 
impractical to account for all such influences in a petrophysical inference problem. One 
solution is to consider some of these properties as prior knowledge. Another one is to 
consider some of these properties as constant and to use a calibrated rock physics model 
that does not account for them. These practical approaches incorporate uncertainty in the 
final result.  Synthetic and real examples are presented. These tests show that such 
uncertainties should be strongly reduced by the integration of information regarding 
porosity from independent well-logs by this proposed methodology. 

A brief introduction of the Bayes Theorem is given in the next section and the 
development of the Bayesian formulation to access the posterior distribution for this 
specific inference problem is described. 

BAYESIAN FORMULATION 
Bayes Theorem 

The problem consists of making inferences about interval porosity φ from the set of 
well-log data d, mathematical formulas derived from experimental rock physics studies 
and prior information I, which is any additional information obtained independently from 
the data. Following the Bayesian approach of inference the solution is given by the 
posterior distribution p(φ | d ,I). This function is obtained by applying the Bayes 
Theorem; which can be expressed by the following equation  
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where )( I|r φ is the prior pdf, )( φ|l d  is the joint pdf for the data, also known as the 
likelihood function, and )( I|h d is a normalizing pdf that ensures posterior distribution 
as a pdf. The posterior pdf should be expressed as the normalized product of prior 
distribution and likelihood function.  

To consider the posterior pdf as the solution of an inverse problem, the likelihood 
must be defined (i.e. the relationship between the data d and the parameter φ exists and is 
known), and there are compatibilities between the prior understanding of the model and 
the final results, i.e., )( φ|l d >0 for some φ where )( I|r φ  > 0. Now it is necessary to 
define the likelihood function and the prior distribution to access the posterior 
distribution.  

Likelihood Function 

This work follows standard steps to construct the likelihood function, which is 
summarized by:  i) selecting the datasets which carry information about φ ii) finding 
mathematical expressions relating each type of porosity; and iii) defining statistical 
models (pdfs) for data distributions, based on data uncertainty.  

Let dφ, dα, dβ and dρ be a set of vectors representing well-log data respectively 
composed of neutron porosity, sonic compression-velocity, sonic shear-velocity and 
density logs. Each of these data vectors should be represented as a sum of a porosity 
function, which is a deterministic variable, and an error component that is a probabilistic 
variable. The error components incorporate the uncertainties, which are associated with 
the process of data acquisition and with the theoretical knowledge. Using numbered 
subscripts to simplify the notions; these datasets can be expressed as the following 
equations: 
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where fi for i =1,�,4, represents the functions that relate the datasets and porosity and ei 
for i=1,�,4, represents the errors in the data. 

The next step is to define the relationships between data vectors and porosity, 
represented by the fi, i=1,�,4 functions. As the value provided by the neutron well-log is 
a porosity estimate, function f1 is the identity function. The expressions relating α and β 
to porosity employed in this report, respectively f2 and f3, are derived from Eberhart-
Phillips et al. (1989). That article presents rock physics models derived from a 
multivariate analysis of laboratory measures on water-saturated samples of 64 different 
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sandstones. Such models consider the influence of effective pressure Pe, porosity φ, and 
clay content γ on velocities α and β. They are given by  

;)e(Pe.... 16.7Pe−−+−−−= 4460731946775 γφα   (3) 

).e(Pe.... Pe16.7−−+−−−= 3610571944703 γφβ   (4) 

These rock-physics models are derived empirically from a set of sandstone samples 
and thus they apply only to the set of rocks studied. The regression coefficient should be 
recalibrated from core samples and logs at the site being studied. 

The f4 function is described by the equation 

,)( fm1 ρφρφρ +−=     (5) 

where ρm is the matrix density and ρf  is the fluid density.  

Considering that these well-log data are independent, the likelihood function should be 
rewritten as the product of four independent data pdfs as follows 

) |(l)|(l)|(l)|(l)|l( φφφφφ ρβαφ ddddd 4321= ,  (6) 

and consider d = [dφ   dα   dβ   dρ ]T. 

Next, it is necessary to establish the criteria to select the probability density models for 
li, i = 1,�,4 data pdfs. We chose to use the principle of maximum entropy to assign 
probabilities and assume that the first- and second-order momentum information was 
sufficient to describe the errors. This choice criterion to construct a likelihood pdf will be 
used as a standard criterion elsewhere in this work. According to such choices, the data 
pdfs are normal and should be expressed as  
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where σi is the standard deviation of the ith data vector. Consider its square, the data error 
variance σi

2. Realistically, these scaling parameters of the data functions are not known a 
priori. They must be treated as unknown parameters to be estimated from the data. In this 
case, the posterior distribution must be rewritten as 

.),,,,|,,,,(p IVPVS ρβαφρφ σσσσφ dddd+    (8) 

Data error variances are not, however, important estimates to consider as a final result 
of the inference procedure. Interval porosity and associated uncertainties are all that 
matters in this problem. This question will be addressed later. 

 



Porosity inference from multiple well log data 

 CREWES Research Report � Volume 14 (2002) 5 

Prior distribution 

A prior distribution is used to restrict the parameter space, which will provide an 
improvement of the ill-posed inverse problem. Following Jeffreys� point of view 
(Jeffreys, 1936) there are two types of prior distribution: a data base prior distribution 
(DBP) and a non-data base prior distribution (NDBP). The DBP is derived from datasets 
available and analyzed prior to the dataset used to construct the likelihood function of the 
current work. NDBP is derived from theoretical knowledge of the physical medium and 
from the investigator�s background experiences. It is important to note that the form of 
two final prior distributions may differ from each other if two investigators use the same 
prior information to construct them.  

Consider the posterior pdf p+ described by Equation (8), where φ and σi, i=1,�,4 are 
unknown parameters. The prior distribution must describe the prior knowledge of those 
parameters. The porosity and random noise of datasets are statistically independent. 
Following Zellner (1996) this type of prior pdf should be expressed as a product of 
independent functions as 

)I|r)I|r)I|r)I|r)I|r)I|,,,r 443322114321 σσσσφσσσσφ φ (((((,( ∝ .(9) 
 

This report follows the Bayesians� most conservative practice to define the prior pdf. 
It considers that with all previous pieces of information available, the only statement is 
that porosity should fall between a 0 and 1 interval. The use of a boxcar function is 
consistent in expressing this prior information (for more details please refer to Zellner, 
1996). 

The prior knowledge of data variances is that these scaling parameters may vary 
between 0 and ∞ . Following Jeffreys (1939), the use of an improper distribution is 
consistent with expressing complete unawareness of such parameters (i.e. any value 
between 0 and ∞  is equiprobable). A logarithm pdf should be deemed as uniformly 
distributed and the use of a r(σi)∝1/σi function is considered a reasonable choice in 
describing this information. This pdf is invariant under power transformation. Thus, prior 
distribution should be expressed as  
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Note that the prior pdf is improper, i.e. it is not normalized. 

Posterior distribution 

With the Bayes Theorem applied, the posterior distribution should be 
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where Ni is the number of data points in vector di 

Data error variances are not important estimates to be considered as the final result of 
the inference procedure. Interval porosity and associated uncertainty is all that matters in 
this problem. The Bayesian methodology provides a standard treatment for such cases of 
uninteresting parameters, which are referred to as nuisance parameters.  The standard 
treatment consists of eliminating the nuisance parameters by integration of the joint 
posterior. This procedure, which is known in statistics as marginalization of the joint 
distribution, is applied and the marginal posterior pdf for porosity is obtained: 
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Any inference question can be addressed to the posterior. For example, one can use 
the mean, median, or mode as estimates for the interval porosity and the standard 
deviation or confidence intervals as measure of uncertainty. 

PRACTICAL IMPLEMENTATION 
The procedure for the previous formulation to be applied to a set of well-log data is as 

follows. The one-dimensional space representing the well position is discretized at M 
regular intervals. The goal is a collection of posterior pdfs representing one posterior for 
each interval. A moving window, which has the length of N well-log observations, is 
applied to compute those posteriors. Every such posterior provides a porosity estimate, by 
its mode, and a measure of the associated uncertainty, by its spread. 

Such posterior pdfs are presented by an image with a colour scale. The vertical axis of 
this image represents the depth, the horizontal axis represents porosity values and the 
colour scale represents the probability amplitudes of the posteriors. This procedure is 
schematically shown in Figure 1. This image provides an idea of the porosity variation 
along the well, given by the maximum probability density for the posteriors and the 
associated uncertainty given by the form of the posteriors. A value for the estimates 
should be easily numerically computed from the posteriors. A confident interval of the 
posterior pdf, which is easily computed, should be considerd a measure of the associated 
uncertainty. 
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FIG 1: This figure shows how the formulation is implemented with a moving window. The vertical 
graph on the left represents a set of well-logs data used. A moving window (red line) runs along 
the well and for each window position, a posterior pdf is computed. The central graph represents 
a posterior pdf for one window position. In the end a collection of posterior pdfs is computed; one 
pdf for each interval of the discrete well and an image with a colour scale representing the 
amplitude of the posteriors is constructed. The image on the right shows an example. Visual 
analysis of this image provides an estimated model for porosity along the well, given by a curve 
that marks the high probability and provides a measure of uncertainty associated with this 
estimated model, given by the spread of the image around the maximum, which represents the 
spread of the posteriors around the mode.  

This method has been tested on both synthetic and real data. In the next section we 
give a synthetic example to show how this methodology works. 

SYNTHETIC DATA EXAMPLE 
This section describes a reservoir model created to simulate synthetic well-log data of 

porosity, sonics (compression and shear waves), and density logs. The synthetic data are 
used to test the proposed methodology, after being corrupted with pseudo-random and 
coherent noises.  

To evaluate the importance of each type of well-log data in increasing the reliability of 
porosity estimates, several inversions are performed considering both each log type alone 
and different combinations of logs. 

The main goal of this example is to evaluate the methodology when the porosity log 
has an unknown shift due, for example, to a calibration error. The model consists of a 60 
m thick sandstone layer, 0.26 porosity and 0.4 kbar/cm3 effective pressure. The clay 
content is set to vary linearly from 0.10, at the top of the layer, to 0.20, at the bottom. 
Using the correct values for porosity, clay content, and pressure, a series of sonics 
(compression and shear sonic wave velocities) and density logs are generated from 
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Equations (3), (4) and (5) with an additional pseudo-random Gaussian noise and sample 
interval of 30 cm. For the porosity neutron log computation a true value of porosity is 
used, with additional pseudo-random Gaussian noise, and also affected by a constant 0.10 
shift of the true porosity value to simulate a calibration error. All logs are shown in 
Figure 2. 

The inversion procedure is applied with a 3 m-wide moving window. The correct clay 
content is assumed to be known and introduced in the likelihood function. As previously 
mentioned, different tests are performed to evaluate the contribution of each type of log 
to increasing the reliability of the estimated porosity model provided. 

Figure 3 shows the inversion results. These colour images represent the results from 
various tests. In all images, the vertical blue line represents the true porosity of the model. 
The first four images in the top row of this figure, images (a), (b), (c) and (d) 
respectively, represent the images obtained from the use of a single log in the process of 
inversion; respectively porosity neutron, compression wave, shear wave, and density log: 
i.e. the posterior distributions p(φ|dφ, I), p(φ|dα, I), p(φ|dβ, I), and p(φ|dρ,I). The inversion 
of the neutron log is clearly affected by the calibration error. The results also demonstrate 
that lowest porosity resolution is obtained from the density log by the larger spread of the 
posterior pdfs and the best resolution is provided from the shear sonic-log.  

 

FIG 2: Well-log profiles generated from a sandstone model used for a synthetic test, which are 
from left to right, porosity neutron log, sonic logs (compressional and shear wave) and density 
log, respectively. These logs are simulated with the 30 cm sample interval and are corrupted with 
pseudo-random Gaussian noise. In addition to the Gaussian noise, the porosity log is also 
affected by a constant 0.10 shift of the true porosity value to simulate a calibration error. The 
vertical line on the porosity neutron log shows the actual porosity value of the model. 

Tests with a pair of logs are performed to provide analysis of the improvement in the 
reduction of the shift bias in porosity estimate from a neutron log. Tests results are given 
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by the posterior pdfs p(φ|dφ, dα, I), p(φ|dφ, dβ, I), and p(φ|dφ, dρ, I)    respectively, which 
are shown the three first images in the bottom row of this figure, images (e), (f), and (g) 
respectively. All results are still strongly biased by the calibration error. When using 
porosity with a shear sonic log the results are still strongly biased by the calibration error, 
but at some depths a second mode clearly marks the true porosity value. Two tests are 
performed using neutron porosity and sonic logs and all logs, resulting in the posterior 
pdfs p(φ|dφ, dα, dβ, I) and p(φ|dφ, dα, dβ, dρ, I) respectively, shown in images (i) and (j). 
The bias is completely eliminated only when all logs are used in the inversion; image (j). 
The graph (e) in the top row of this figure shows the misfit between the true porosity and 
the estimated porosity model for this last test (p(φ|dφ, dα, dβ, dρ, I)). Maximum misfit for 
porosity estimated from the mode of the posteriors showed in image (j) is 0.005. 

 

FIG 3: Images and a graphic showing the results of the tests with a synthetic model. The images 
represent the posterior distribution for porosity from different tests. A vertical line in all images 
represents the actual value of the porosity model. These colour images are as presented in 
Figure 1. The first four images in the top row, images (a), (b), (c), and (d), respectively, represent 
the results obtained from the use of a single log in the process of inversion; neutron (p(φ|dφ, I)), 
compression sonic wave (p(φ|dα, I)), shear sonic wave (p(φ| dβ,  I)), and density p(φ|dρ, I)) logs 
respectively. The results of tests with pairs of logs, with the posteriors p(φ|dφ, dα, I), p(φ|dφ, dβ, I), 
and p(φ|dφ, dρ, I), are shown by images (f), (g), and (h), respectively. Tests using neutron and 
sonic logs (p(φ|dφ, dα, dβ, I)) and using all logs (p(φ|dφ, dα, dβ, dρ, I), are shown by images (i) and 
(j), respectively. Graphic (e) in the top row of this figure shows the misfit between the actual 
porosity and the estimated porosity model from the modes of p(φ|dφ, dα, dβ, dρ, I).  

These synthetic tests have shown that the proposed methodology can integrate the 
information from independent datasets in a posterior pdf. The information on the medium 
that is consistently present in all datasets, such as porosity information, strongly 
influences the posterior. Otherwise, error components, which are present in some 
particular datasets, have their effect minimized on the posterior. 
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Next, a real test is presented to evaluate the practical applicability of this 
methodology. 

REAL DATA EXAMPLE 
The applicability of this methodology was investigated in a well-log dataset from 

lower Cretaceous sandstone of Glauconitic Formation at the Blackfoot Field, located 15 
km southeast of Strathmore, Alberta, Canada. The target rocks are incised valley-fill 
sediments within the Glauconitic Formation. In the Blackfoot area the Glauconitic sands 
thickness varies from 0 to over 35 m. It is subdivided into three phases of valley incision 
which, however, is discontinuous. The lower and upper members are made of quartz 
sandstone with 0.18 average porosity, while the middle member consists of low porosity 
tight lithic sandstone.  

Figure 4 shows the datasets from well 0808 used for this example, i.e. the porosity 
neutron log together with the porosity estimated from core laboratory analysis, sonic logs 
(compression and shear waves), density log, and the clay content estimated from the 
gamma-ray log. Note the vertical heterogeneity shown by the clay content plot. The 1683 
m - 1692 m interval has a high clay volume and the porosity estimated by the porosity log 
at this interval is biased by a shift that results in an upper evaluation of the porosity when 
compared with the porosity estimated from core samples. This shift clearly represents the 
effect of the hydrogen from the clay content on the porosity neutron log. 

The main goal of this example is an analysis of the improved resolution of the 
estimated porosity model from the posterior pdfs, which integrates information from 
independent well-log datasets.  

One key step of this methodology is to define the rock physics models to construct the 
likelihood function. The relations described from equations (3) and (4) are empirical and 
they apply only to the set of rocks studied for that work (Eberhart-Phillips et al., 1989). 
Although these authors have shown that the results should extend in general to many 
consolidated sandstones in any case, if possible, the regression coefficients should be 
considered for the specific site being studied.  

So as to improve the process of application of this methodology we conducted a 
petrophysical study using laboratory core samples and well-log data from the same 
reservoir, through from a different well. In the next section we present a pretophysical 
study using a collection of well-log dataset from Glauconitic producer sandstone 
formation in Blackfoot Area.  

Rock physics regression-coefficients inference 

Core samples and well-log data from wells 16-05 and 16-08 from the Blackfoot area 
provided the information on porosity (from core samples analysis), clay content (from 
gamma ray log), and sonic velocities (from compression and shear wave logs) for the 
following rock physics study. 

The normal multiple-regression model analysis (Zellner, 1996) was adopted in a 
Bayesian inference for the regression coefficients of the Eberhart-Phillips models 
(equations (3) and (4)).  
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The effective pressure found from p-wave sonic log is 0.11 kbar in both wells. Note 
that as we do not have a pressure gradient it is impossible to compute the regression 
coefficient for effective pressure. In this work the fourth term of the Eberhart-Phillips 
model is incorporated in the first regression. Substituting the resulting rock physics 
models for f2 and f3 and writing the expressions in, a vector form is found  

,ii e Xmd i +=       (13) 

where the vector of n observations di, represents the dependent variable and X is a matrix 
with the known petrophysical properties porosity φ and clay content γ along the wells, 
which are the independent variables. mi is a vector of the regression coefficients ai, bi,  
and ci. ei is a vector of the disturbances in the observations and incorporate the 
uncertainties related with the rock physics model too. For compression i=2 and i=3 for 
shear wave. 

This inference aims at the posterior pdf for the regression coefficients mi, given the 
data di and the prior information I represented by p(mi|di,I). The Bayes theorem is 
applied. We followed the same statements described in this report to access the likelihood 
pdf and the prior information. The posterior distribution mode is considered an estimate 
for the regression coefficients. The rock physics models with these estimated regression-
coefficients are considered the calibrated Eberhart-Phillips models for the lithologies 
being studied.  

The marginal joint posterior distributions for regression coefficients are shown in 
Figures 5 and 6, respectively for compression and shear wave. In both figures, the 
marginal joint posterior pdfs for a pair of regression coefficients, p(ai, bi | di), p(ai, ci | di), 
and p(bi, ci | di), are shown at the top,  from left to right. The ellipse form showed in these 
images represents the correlation between the petrophysical properties imposed by the 
rock physics models. The marginal posterior pdfs for each of the regression-coefficients, 
p(ai, | di), p(bi | di), and p(ci | di), respectively, are shown at the bottom of those figures, 
from left to right. The form of these functions represents the resolution of the estimated 
coefficients. 

The final calibrated rock physics models are 

γφα 380124454 ... +−= ,    (14) 

γφβ 080611892 ... +−= .    (15) 

To evaluate such rock physics models, compression and shear velocities are computed 
using equations (14) and (15) for the well 0808 and using porosity estimates from core 
laboratory analysis and clay content estimates from gamma ray log. Figures 7 and 8 
display the cross-plots for compression- and shear-waves, respectively between the 
computed velocities and the measured velocities from the well and cross-plots between 
velocities and porosity and clay content, with the observed and computed values. 
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FIG 4: These plots represent the well-logs dataset used in the real example. In the first plot the 
porosity neutron log and the porosity estimated from core analysis. The clay content plot is 
derived from the gamma-ray log. The interval represents the Glauconitic sandstone from the 
Blackfoot area (well 08-08) that has 0.18 average porosity. 
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FIG 5: Resulting marginal posteriors for the regression coefficients of the compression-wave 
rock-physics model. The marginal joint posterior pdfs for a pair of regression coefficients, p(ai, bi | 
di), p(ai, ci | di), and p(bi, ci | di), are shown at the top, from left to right. The marginal posterior pdfs 
for each regression coefficients, p(ai, | di), p(bi | di), and p(ci | di), respectively, are shown at the 
bottom, from left to right. 

 

FIG 6: Resulting marginal posteriors for the regression coefficients of the shear-wave rock-
physics model. Marginal joint posterior pdfs for a pair of regression coefficients, p(ai, bi | di), p(ai, 
ci | di), and p(bi, ci | di), are shown at the top, from left to right. Marginal posterior pdfs for each 
regression coefficients, p(ai, | di), p(bi | di), and p(ci | di), respectively, are shown at the bottom, 
from left to right. 
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FIG 7: These cross-plots depict the computed compression-wave velocity from Equation (14) 
against the observed compression sonic-log (left), porosity against compression-wave velocity 
(centre); observed and computed from Equation (14) and clay content against compression-wave 
velocity (right); observed log and computed from Equation (14). These data are from well-log 
0808. The porosity estimates used are derived from core samples, the clay content from gamma-
ray log and the sonic velocity data from compression sonic-log.  

 

FIG 8: These cross-plots depict the computed shear-wave velocity from Equation (15) against the 
observed shear sonic-log (left), porosity against shear-wave velocity (centre); observed log and 
computed from Equation (15) and clay content against shear-wave velocity (right); observed log 
and computed from Equation (15). These data are from well-log 0808. The porosity estimates 
used are derived from core samples, the clay content estimates from gamma-ray log, and the 
sonic velocity data from shear sonic-log.  

The next step is to apply a moving window operator, using the rock-physics models of 
equations (14) and (15) in the likelihood functions for a porosity inference. The results of 
the process of porosity inference are shown in the section below. 

Porosity inference 

As done in the synthetic example, several inversions are performed from the real 
dataset, considering each log type alone and different combinations of logs. Figure 9 
shows the images representing the posterior pdfs for the use of single logs, porosity 
neutron, compression wave, shear wave, and density logs - images p(φ|dφ,I), p(φ|dα,I), 
p(φ|dβ,I), and p(φ|dρ,I) respectively. The dark dots in these images represent the porosity 
estimates from core samples laboratory analysis. Note in the first image on the left, 
representing the inversion results from a porosity neutron log (p(φ|dφ,I)) alone, the effect 
of high clay content in the 1683 m - 1692 m interval. The fourth image, which represents 
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the result from the inversion of the density log (p(φ|dρ,I)), shows a good porosity estimate 
within this interval but outside this interval, the porosity is under-evaluated. The other 
images show at some depths the modes of the posterior pdfs with a misfit regarding the 
porosity from core samples. The plot (e) on the right represents the modes from these 
four images� posterior pdfs. We can see that each log type provides a different porosity 
model after inversion. These different results are the effect of the independent 
uncertainties associated with each well-log method. 

 

FIG 9: Images representing the posterior pdfs from tests using single logs, i.e. porosity neutron, 
compression wave, shear wave, and density logs - images p(φ|dφ,I), p(φ|dα,I), p(φ|dβ,I), and 
p(φ|dρ,I), respectively. The blue dots in these images represent the porosity estimates from core 
sample laboratory analysis. The plot (e) on the right represents the modes from these four 
images� posterior pdfs. 

The results of the inversion from combinations of logs are shown in the images in 
Figure 10. The three images on the left represent the results from pairs of logs, porosity 
neutron with compression wave sonic logs (p(φ|dφ,dα,I)), porosity neutron with shear 
wave sonic logs (p(φ|dφ,dβ,I)), and porosity neutron with density logs (p(φ|dφ,dρ,I)), 
respectively. As in the synthetic examples, these posterior pdfs show high influence of 
the porosity neutron log. The fourth image represents the result of the inversion from 
porosity neutron with sonic (compression and shear wave) logs (p(φ|dφ,dα,dβ, I)). This 
image shows a smaller influence of the neutron porosity log, but the modes of the 
posteriors pdfs and the core porosity estimates still have a considerable misfit. The last 
image on the right represents the results of the inversion from all log data put together 
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(p(φ|dφ,dα,dβ,dρ,I)). This image shows a considerably improved porosity estimated from 
the posterior pdf modes.  Within the 1683 m - 1692 m interval the influence of the 
porosity neutron log vanished completely and out of this interval good porosity estimates 
could be found. 

 

FIG 10: Results of the inversion from combinations of logs. The images from left to right represent 
the results from pairs of logs: porosity neutron with compression wave logs (p(φ|dφ,dα,I)), porosity 
neutron with shear wave logs (p(φ|dφ,dβ,I)), and porosity neutron with density logs (p(φ|dφ,dρ,I)), 
respectively, from porosity neutron with sonic (compression and shear wave) logs (p(φ|dφ,dα,dβ, 
I)) and with all log data put together (p(φ|dφ,dα,dβ,dρ, I)). The black dots in these images represent 
the porosity estimates from core samples laboratory analysis. 

CONCLUSION 
The Bayesian methodology of inference has resources to handle a considerable 

amount of information in a simple join-inversion process of well-log data. Results of the 
application of this methodology for porosity inference in synthetic and real example show 
that: 

1. the most informative data about porosity is the shear wave velocity, followed by 
compression wave velocity and density; 

2. the joint inversion of the synthetic well-logs reduced the effect of systematic error 
in idealized situations; 
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3. the joint inversion of real well-logs has provided treatment of the effect of 
complex combination of uncertainties from independent sources in porosity 
estimates. 

FUTURE WORK 
Investigations to extend this methodology for inference of other petrophysical 

properties has been started. This evaluation of the viability of using other rock physics 
models and other well-log data to infer fluid properties and permeability has been started 
with a new Bayesian formulation. 
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