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Fast wavefield extrapolation by phase-shift in the nonuniform 
Gabor domain 

Jeff P. Grossman, Gary F. Margrave, and Michael P. Lamoureux 

ABSTRACT 
Wavefield extrapolation for a laterally varying velocity can be achieved by applying a 

nonstationary phase-shift filter to an adaptive, nonuniform Gabor transform over the 
lateral coordinate. A family of adaptive Gabor frames can be constructed from a 
molecular decomposition of unity, each molecule of the latter being built by conjoining 
neighbouring atoms from a uniform partition of unity � consisting of translates of a single 
atom along the lateral coordinate � according to a local stationarity criterion derived from 
the velocity model. 

 The resulting extrapolation scheme � called AGPS (adaptive Gabor phase-shift) � has 
a computational cost that is proportional to the complexity of the velocity model, v(x), 
while its accuracy is comparable to both NSPS (nonstationary phase-shift) and 
generalized PSPI (phase-shift plus interpolation). AGPS includes NSPS and PSPI as 
complementary limiting cases, yet the cost of AGPS ranges from an order of magnitude 
less to about the same order. This range is based on two extremes: a simple step between 
two constant velocities, and a velocity that varies randomly at each offset.  

INTRODUCTION 
This paper has a predominantly qualitative scope. Consequently, an investigation into 

the underlying mathematical and theoretical background for the new AGPS algorithm has 
been reserved for a companion paper (Grossman et al., 2002), included in the Data 
Analysis section of this Research Report. For a derivation of the new and exact wavefield 
extrapolator � used here to forward model the propagation of an impulsive wavefield � 
see Margrave et al., (2002, this volume). Apart from its remarkable accuracy, a 
distinguishing feature of Margrave�s extrapolator is its transitivity through any v(x) 
medium. By transitivity, we mean that a single depth step yields the same result as the 
iteration of any number of intermediate steps does. We use this algorithm as a benchmark 
to test the performance of three approximate wavefield extrapolation methods: the NSPS 
and generalized PSPI methods of Margrave and Ferguson (1999) and AGPS. 

The AGPS algorithm includes NSPS and PSPI as complementary limiting cases. Each 
of these methods applies a velocity-dependent, nonstationary phase-shift filter over each 
temporal frequency slice of the input data. The two latter filters differ to the extent that 
the functional dependence of the velocity is either on the input coordinates (NSPS) or the 
output coordinates (PSPI) � in fact, they are spatial transposes of each other. This is the 
key reason why both methods are approximate: indeed, any accurate phase-shift operator 
in a v(x) medium has to account for the fact that the velocity can vary along the trajectory 
of a ray. AGPS attempts to address this problem by representing the input and the output 
wavefields as a superposition of windowed components, each of which is approximately 
stationary with respect to the velocity.  
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We begin with an overview of the AGPS algorithm, and refer the reader to Grossman, 
et al. (this volume) for the mathematical details. We then provide a performance analysis 
for the AGPS, PSPI, and NSPS extrapolators, based on forward-modelled data generated 
by Margrave�s exact extrapolator. 

OVERVIEW OF THE AGPS METHOD 

AGPS propagates a wavefield from a depth level z to a depth level z z+ ∆  by applying 
nonstationary phase-shift filters to an adaptive spatial Gabor transform of the input data. 
Given a velocity model, v(x), the first step is to choose a suitable window, or atom. The 
choice of atom is in itself a current topic of research, (e.g., Feichtinger and Strohmer, 
1998, or Grochenig, 2001) but we recommend using a Gaussian or Gaussian-like 
window, with a halfwidth that is at least large enough to ensure that its sampled version 
faithfully represents it. This atom is then translated along the discrete x-coordinate, one 
atom centred at each sample point. The resulting suite of windows is rescaled, if 
necessary, to ensure that its superposition equals one: thus, the translated atoms form a 
maximal, uniform partition of unity (POU).  

Next, this maximal POU is adapted to yield a nonuniform partition of unity, in such a 
way that the essential nonstationarity of the velocity function is respected. This procedure 
involves the formation of molecules, or macro-windows, by summing neighbouring 
atoms over regions that meet a local stationarity measure. The stationarity measure in the 
current context is simply an acceptable threshold against which the deviation of the 
velocity from its mean over the current molecule is compared. Thus, if this deviation is 
less than the threshold, the current atom is conjoined to the current molecule. Each 
molecule gathers atoms until it encounters a large enough velocity anomaly. The result is 
an adaptive partition of unity, or molecular decomposition. 

In our numerical implementation of the AGPS algorithm, the molecules are defined as 
follows. Let 0λ ≥  be a constant, called a threshold, and let the current state of the thn  
molecule be denoted by N

nM , where N is the current number of atoms it contains. If 
1nx  

denotes the centre coordinate of the first atom in N
nM , we may write  
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( ) ( )

( )
1

1

N

N

n N
j n jj n

n n
n jj n

N
nM

v x M x

M x
v =

=

=
∑
∑

. (2) 

Finally, the stationarity condition with respect to the given threshold λ  goes as follows: 
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Such a molecular decomposition is shown in Figure 1. The illustrated velocity model 
is representative of all types of variations, ranging from a simple constant to an 
everywhere discontinuous random function. Note how the atoms cluster near the larger 
local variations in the velocity. Everywhere else, the atoms �bond� to form molecules; 
and their size varies inversely with the magnitude of the local variation of v. Note also 
that the molecules sum to unity, as desired. 

The next step is to use this molecular decomposition to construct a one-parameter 
family of analysis and synthesis frames for the Gabor transform, indexed by [ ]0,1p ∈ . 
For each fixed p, the analysis windows are defined by raising each molecule to the power 
p. The corresponding dual frame, consisting of synthesis windows, is defined by raising 
each molecule in the decomposition to the complementary power, 1 p− . 

For example, if the fundamental atom is supported on a finite interval, and 1p = , then 
the molecular decomposition itself forms the analysis frame, and the synthesis windows 
are boxcars. For 0p = , these roles are reversed. However, if the atom is supported on the 
whole of ! , (e.g., a Gaussian) then no synthesis (analysis) windows are used if 1p =  
( 0p = ). In either case, the analysis and synthesis frames are identical for 1/ 2p = . 

 

 

FIG. 1: A demonstration of how the Gabor algorithm achieves an adaptive partition of unity frame 
(magenta) from a maximal partition of unity, (not shown) which reflects the local nonstationarity of 
a velocity model. The piecewise-defined velocity model (blue) is representative of all types of 
velocity variation: constant, random, a jump discontinuity between two constants, and a jump 
from smooth to constant. The smoothed velocity (dashed green), obtained by convolving the 
velocity model with a fundamental atom, (any of the smallest magenta windows) acts as a visual 
aid in comparing the molecules (magenta) to the local velocity variations. 
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The analysis and synthesis frames, constructed in this way, ensure an overall energy 
and amplitude preserving transformation to the Gabor domain and back (see Grossman et 
al., 2002). Moreover, with respect to the choice of atom and stationarity measure, the 
redundancy of the Gabor transform is minimized; hence so is its computation time. 

Each frequency slice of the input data, ( )0, ,x z zψ ω =  is then Gabor transformed, 

( ( ), xx x k→ " ), phase-shifted by i ze φ∆ , where 

 "
"( )

2
2

2( , , )x xx k k
v x

ωφ ω = −
 
 

, (4) 

and then inverse Gabor-transformed. The result is an estimate of the wavefield, 
( )0, ,x z z zψ ω = + ∆ , at depth 0z z+ ∆  and frequency ω . Finally, after repeating this 

process for each ω , an inverse Fourier transform over ω  gives the desired estimate in 
space-time coordinates. 

The velocity function ( )v x"  in the dispersion relation (4) is defined, for each x" , as the 

mean of the velocity over the molecule centred at x" . It thus assigns a constant velocity to 
each molecule in the Gabor decomposition. A key feature that controls the accuracy of 
the algorithm is the choice of stationarity measure: a large threshold can lead to large 
molecules; hence, a more coarsely sampled velocity. On the other hand, using a strict 
measure could lead to a higher cost than necessary for the desired accuracy. 

Roughly speaking, the balance between the dependence of the algorithm on the input 
and the output coordinates can be shifted by adjusting the parameter p in [0,1]. However, 
the situation is more complicated than this, and has yet to be fully understood. We know 
that in the limit as the window size shrinks to zero, the cases 1p =  and 0p =  reduce to 
the NSPS and PSPI algorithms, respectively. It turns out that for the examples below, 
which use compactly supported windows, the best choice is 1p = . Intuitively, we might 
expect 1/ 2p =  to be optimal, since this leads to a symmetric dependence on the input 
and output coordinates. Experiment suggests that the optimal value of p might depend on 
the choice of window, but this remains an open question. 

EXAMPLES 
Margrave�s new and exact one-way wavefield extrapolation algorithm was used as a 

forward model to upward propagate an impulsive wavefield through a laterally varying 
velocity field. This impulse response was then inverted, by reverse-extrapolation, using 
the Exact, NSPS, PSPI, and AGPS extrapolators. The relative costs for two extreme cases 
are shown in Table 1. The first is a step between two constant velocities, (Figure 2(a)) 
and the second involves a velocity function that varies randomly at each offset (Figure 
2(b)). In the first case, AGPS outperforms NSPS and PSPI by a factor of six, while all 
three have similar costs in the second case. The extra cost for the exact algorithm in the 
random case is small, so its use in complex media may be justified. 
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Table 1. Comparison of computation times for various extrapolation algorithms. In contrast to the 
first three methods, the cost of the AGPS extrapolator is proportional to the complexity of the 
velocity model. The cost of AGPS spans an order of magnitude between the two extremes, 
namely, the velocity models depicted in Figures 2 and 3. 

Extrapolation algorithm Absolute cost for step/random 
velocities  (seconds) 

Relative cost for step/random 
velocities  (% of Exact) 

Exact 47.067/46.317 100/100 

NSPS - 1 step 3.946/3.675 8.2/7.9 

NSPS - 5 steps 20.580/17.545 42.5/37.9 

PSPI - 1 step 3.995/3.746 8.2/8.1 

PSPI - 5 steps 20.365/19.217 41.9/41.5 

AGPS - 1 step 0.601/3.916 1.2/8.5 

AGPS - 5 steps 3.245/19.438 6.4/42.0 

Figure 2 shows the two velocity models used in our numerical examples, and the 
corresponding molecular decompositions of unity. Both decompositions are used as 
analysis frames (corresponding to 1p =  above) for the nonuniform Gabor transform. The 
fundamental atoms (black) are Lamoureux windows of order two, (twice differentiable 
polynomial splines) sampled at 7 points, and the sample spacing between atoms is 10 m. 

FIG. 2: (a) Molecular decomposition (blue) for a step velocity (magenta), constructed from the 
fundamental Gabor atom shown in black. The velocity jumps from 2250 m/s to 3750 m/s. (b) 
Molecular decomposition (blue) for a random velocity (magenta), built from the Gabor atom 
shown in black. The velocity fluctuates randomly between 1500 m/s and 2500 m/s. 

 The input wavefield for both examples, shown in Figure 3(a), consists of eight 
bandlimited impulses. Figures 3(b) and 3(c) show the exact upward extrapolations of the 
input wavefield by 200m, using the velocity models of Figures 2(a) and 2(b), 

(a) (b) 
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respectively. Figure 4 shows the results of reverse extrapolating the last two fields with 
the exact operator. These last two results will serve as benchmarks for comparing the 
quality of the remaining methods. Aside from some minor numerical artefacts, these 
images are the best one can hope to obtain (see Margrave et al., 2002). 

  

FIG. 3: (a) Input wavefield for two upward extrapolations by 200m, using the exact extrapolator; 
(b) and (c) show the resulting wavefields, using the velocity models of Figures 2(a) and (b), 
respectively. 

Figure 5 displays the various results of inverse extrapolating the wavefield of Figure 3(b) 
� using the step velocity model of Figure 2(a) � which should be compared to Figure 
4(a). The corresponding computation times are listed in Table 1. The rows contain pairs 
of results for PSPI, NSPS, and AGPS, respectively; the first column is for a single depth 
step of 200m, and the second is for five steps of 40m. The last row also shows the 
corresponding molecular decomposition for the AGPS case. 

PSPI gives a reasonable result in both cases, but it introduces an artificial discontinuity 
in the wavefield at the interface between the two constant velocity blocks. It is well 
known that PSPI produces this artefact for large depth steps. The results for NSPS are 
better, particularly since the fifth impulse is more focused. AGPS yields essentially the 
same result as NSPS, but it shows marginally fewer artefacts in the case of five steps. 
This makes NSPS a bargain � at least for simple velocity models. 

  

FIG. 4: Inversion of the two wavefields of Figures 3(a) and 3(b): (a) using the velocity model of 
Figure 2(a), and (b) using the velocity model of Figure 2(b). 

(a) (b) (c) 

(a) (b) 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

FIG. 5: Results of inverse extrapolating the wavefield of Figure 3(b), using the step velocity model 
of Figure 2(a). The corresponding computation times are listed in Table 1. The rows contain pairs 
of results for PSPI, NSPS, and AGPS, respectively; the first column is for a single depth step of 
200m, and the second is for five steps of 40m. The last row also shows the corresponding 
molecular decomposition (black) for the AGPS case. Compare these to Figure 4(a). 
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Figure 6 displays the results, in exactly the same format as for Figure 5, using the 
input wavefield of Figure 3(c) and random velocity model of Figure 2(b). These should 
be compared to Figure 4(b). The corresponding computation times are listed in Table 1.  

The PSPI and NSPS results 6(a) and (c) are remarkably different. PSPI again 
introduces discontinuities in the wavefield at every discontinuity in the velocity � hence 
the randomly scattered appearance of the extrapolation. The result (c) for NSPS shows 
�migration smiles� that arise due to the use of incorrect velocities. Increasing the number 
of steps, as in (b) and (d), helps to cure both of these issues. Again, AGPS yields very 
similar results as NSPS in both cases, although AGPS is slightly better focused, and 
contains fewer artefacts. Since they use approximate velocities, all three methods tend to 
misplace the wavefield in time. This effect is most easily observed near discontinuities in 
the velocity function. 

SUMMARY 
We showed that AGPS propagates a wavefield from a depth level z to a depth level 

z z+ ∆  by applying nonstationary phase-shift filters to an adaptive spatial Gabor 
transform of the input data. A family of adaptive Gabor frames was constructed from a 
molecular decomposition of unity. Each molecule of the latter was built by conjoining 
neighbouring atoms from a uniform partition of unity - consisting of translates of a single 
atom along the lateral coordinate - according to a local stationarity criterion derived from 
the velocity model. Each molecule in the resulting Gabor frame was assigned a mean 
velocity, and then the phase-shift operator was applied, using these velocities, in the 
nonuniform Gabor domain. This process was repeated for each temporal frequency slice, 
and the desired extrapolation was represented in the space-time domain by applying an 
inverse Gabor transform, followed by an inverse Fourier transform over temporal 
frequency. 

The cost of AGPS is proportional to both the complexity of the velocity model and the 
desired degree of accuracy. Its accuracy is comparable to that of NSPS and PSPI, but its 
cost is much lower, especially for simple velocity models. For random media, the cost of 
Margrave�s exact algorithm is only marginally greater than the latter three, so its superior 
quality warrants its use. 

FUTURE WORK 
Each of the approximate wavefield extrapolators suffers from a misplacement of the 

wavefield in time, hence also in depth, especially near vertical discontinuities in the 
velocity field. However, this can likely be healed somewhat by using a processing 
technique similar to that used by Stoffa et al., (1990). We first rewrite the phase-shift, 

zφ ∆  (see expression (4)) as the sum of a focusing term, f zϕ ∆ , and a shifting term, 

s zϕ ∆ , where 

 ( ) ( )
2

21 1      and      .x
f s

k
v x v x

ω ωϕ ϕ
ω

 
= − − =  

 
 (6) 



Gabor wavefield extrapolation 

 CREWES Research Report � Volume 14 (2002) 9 

 

 

(a) (b) 

 

(c) (d) 

 

(e) (f) 

FIG. 6: Results of inverse extrapolating the wavefield of Figure 3(c), using the step velocity model 
of Figure 2(b). The corresponding computation times are listed in Table 1. The rows contain pairs 
of results for PSPI, NSPS, and AGPS, respectively; the first column is for a single depth step of 
200m, and the second is for five steps of 40m. The last row also shows the corresponding 
molecular decomposition (black) for the AGPS case. Compare these to Figure 4(b). 
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The shifting term is independent of xk , so it does not vary with propagation direction. 
Physically, it is responsible for a vertical depth shift of the data, while the focusing term 
serves as an angle-dependent correction. The idea is to precondition the data by applying 
the phase-shift operator  

 si ze ϕ ∆  (7) 

in the ( ),x ω  domain, before implementing the focusing phase-shift filter in the Gabor 
domain. The second step amounts to replacing expression (4) with  

 fi ze ϕ ∆  (8) 

in the AGPS algorithm. 
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