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Staggered grids for 3D pseudospectral modelling in anisotropic 
elastic media 

Richard A. Bale 

ABSTRACT 
Pseudospectral modeling is an alternative to finite-difference that is based on Fourier 

spatial operators.  It can be applied in 3D to anisotropic elastic media.  The nature of non-
causal artifacts, which arise during pseudospectral modelling, is reviewed.  They are a 
result of Nyquist discontinuities in the periodic wavenumber spectrum.  The well-known 
solution, using staggered grids, can be made exact for isotropy or for anisotropy with at 
least orthorhombic symmetry, but cannot be done exactly for general anisotropy.  Further 
interpolation or shifting is required.  The stress-strain relationship can be factorized into 
an orthorhombic type term, where the staggering is exact, and a residual term where the 
shifting operations are applied as diagonal matrices.  Examples illustrate the benefit of 
using this scheme over the standard (non-staggered) grid approach. 

INTRODUCTION 
The pseudospectral method (Kosloff and Baysal, 1982) is a grid based modelling 

method similar to finite difference, with one key difference.  Instead of using difference 
operators, Fourier transforms are used to apply the spatial derivatives.  It can be viewed 
as a limiting case of higher order finite difference, when the operator size equals the grid 
dimension.  The main advantage, for seismic modelling, is that it requires considerably 
fewer grid points per wavelength, to attain any desired accuracy.  According to Fornberg 
(1987), a fourth order finite difference code needs 4 times as many grid points per 
wavelength as the pseudospectral approach, along each spatial dimension.  Hence, the 
pseudospectral method is particularly attractive for modelling in 3D. 

However, the pseudospectral method is not without its own difficulties.  These include 
unbalanced numerical dispersion, due to the use of a difference approximation in the time 
marching, and wrap-around artifacts, due to the periodicity implied by using the Fourier 
domain.  The first of these can be addressed by the use of higher order operators 
(Dablain, 1986).  The second requires the use of absorbing boundaries (Cerjan et al., 
1985), or perfectly matched layers (Collino and Tsogka, 2001).   

Another difficulty, and the subject of this paper, is the generation of non-causal 
ringing artifacts, particularly in the presence of large abrupt changes in the medium.  It is 
well established (Özdenvar and McMechan, 1996; Corrêa et al., 2002) that modelling on 
a staggered grid mitigates these effects.   Staggered grids are also used in finite difference 
modelling to ensure centred derivatives.  The extension to general anisotropy gives rise to 
complications with the staggering schemes for both finite difference and pseudospectral 
methods (Igel et al., 1995; Carcione et al., 2002).  In the first section of this paper, I 
describe a staggering scheme for 3D pseudospectral modelling in fully anisotropic media.  
This is based upon decomposing the anisotropy into orthorhombic and non-orthorhombic 
stiffnesses.  In the second part, I show some simple examples to illustrate the effect of 
staggering the grid for different anisotropies. 
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THEORY 
The modelling of wave propagation in elastic, anisotropic, heterogeneous media is 

based upon the following equation of motion: 

 jljlj fu += ,σρ !!  (1) 

where ρ is density, uj is the component of displacement in the jth direction, and fj is the 
body force which in this case is taken to be the source term.   

Above, and throughout this paper, I use the convention that �,l� denotes partial 
differentiation with respect to xl, the lth spatial coordinate, and also the Einstein 
summation convention whereby twice-repeated indices indicate an implied summation.  
Suffices repeated more than twice imply that the summation convention is suspended.  
All suffices take the values 1,2 and 3, and to clarify I use x,y and z when appropriate.  
Also u!!  indicates the second time derivative of u. The stress-strain relationship 
(generalized Hooke�s law) between the stress σjl, and the strain emn, is given by: 

 mnjlmnjl ec=σ  (2) 

where cjlmn is the 4th rank stiffness tensor.  In turn the strain tensor is given by: 

 ( )mnnmmn uue ,,21 +=  (3) 

An alternative representation of the stiffness tensor uses the Voigt notation to replace 
the 4th rank tensor cjlmn by a symmetric 6x6 matrix C as follows: 
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where the lower half of the matrix is implied by symmetry.   

Likewise the stress and strain tensors are written in a vector form as follows: 
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after which the stress-strain relationship is written as: 

 Ceσ = . (4c) 

Note however that (4c) is not a tensor equation � it is not invariant under rotation for 
example. 

Staggered Fourier derivatives  
When a heterogeneous wave equation, such as the elastic wave equation, is used for 

pseudospectral forward modelling, non-causal ringing artifacts can arise.  This 
phenomenon has been recognized and diagnosed by several authors (Özdenvar and 
McMechan, 1996; Carcione, 1999).  A systematic analysis of the effect is found in 
(Corrêa et al., 2002), which I summarize here. 

Consider a simple 1D scalar wavefield )(xu . Application of the discrete Fourier 
domain spatial derivative operator is given by: 

 ∑
−=

−=
Nyq

Nyqx

k

kk
xxxx xikkuikuD )exp()(~ , (5) 

where u~ is the discrete Fourier transform of u taken in the x direction, and Nyqk  is the 
Nyquist wavenumber, given by xkNyq ∆= π .  The operator applied to u~ has the value 

  
x

eik
i

Nyq ∆
=±

± 2ππ , 

at Nyqk± .   

This has two undesirable and physically problematic side effects: 

1. The resulting derivative has a pure imaginary Nyquist component, whereas 
physical (i.e. real valued) wavefields must have real Nyquist. 

2. There is a discontinuity in phase (from 2/π−  to 2/π ) at Nyqk± .  Recall that in 
the Fourier domain the wavefield is periodic, with Nyqk− and Nyqk+ corresponding 
to the same wavenumber.   
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It is the second of these effects which is more fundamental.  Even if we artificially 
remove the imaginary Nyquist problem by setting the amplitude at that point to zero, the 
discontinuity still exists.  A discontinuity in the Fourier domain corresponds to a signal in 
the spatial domain which is non-local (i.e. non-zero everywhere), and so results in ringing 
artifacts.  This problem does not exist for even derivatives, where the operator is equal to 

2
Nyqk− for both Nyquist values.  This explains why the artifacts arise in the presence of 

heterogeneities.  For a purely homogeneous medium the second derivative operator 
commutes with the medium properties, so that continuity at Nyquist is restored.  
However, when there is variation in the medium, the first derivative effects remain 
present. 

Corrêa et al. (2002) show that both of these effects are addressed by adopting a 
staggered grid, positioned at the half grid points, for computation of the odd derivatives.  
Why does this correct the problem?  Application of the shift operators that move the 
wavefield forward or backward half a grid point is given by: 

 ( ) ( )∑
−=

± 
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At the Nyquist wavenumbers, Nyqk± , this operator takes the values 2ie π∓ .  Thus when 
combined with the derivative operator (5) we obtain staggered grid derivative operators: 
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which have real values at Nyqk± .  Moreover there is no longer a phase discontinuity, as 
the phase is 0 at both Nyqk± . 

In order to return the second derivative to the original grid location, +
xD is used for the 

first derivative, whilst −
xD is used for the second.  To ensure the correct model elastic 

properties are applied, they must also be interpolated to the intermediate grid positions.  

Staggered grid for 3D anisotropic elastic modelling 
When extending this principle to the elastic equation in 3D, there are a couple of 

additional considerations.  Firstly, the staggering is performed along each spatial axis, 
giving rise to a total of 7 staggered nodes for each node in the original grid.  Secondly, 
computation of the strain tensor involves mixed derivatives, involving differentiation 
with respect to the 3 spatial coordinates, using operators ±±

yx DD , and ±
zD .  The choice of 

nodes for each computation is determined by the directions of derivatives involved, and 
becomes somewhat complex.   
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Carcione (1999) gave a solution to this staggering problem for the 2D VTI case.  In 
fact his solution is general enough to use for orthorhombic symmetries aligned with the 
computational grid, as it only assumes a Voigt matrix of the following form: 
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with zeros in the absent positions.  The same solution also applies for 3D, where the 
staggered grid is shown (with a slight abuse of the playing card symbols) in Figure (1).  
The wavefield derivatives and material property values for each node are given in Table 
1, the stress-strain relationships in Table 2 and the equations of motion in Table 3. 

The trick that makes this work is that the stresses and strains are defined on the same 
nodes for all non-zero stiffness coefficients.   

 

FIG 1. Staggered grid arrangement for 3D modelling of elastic wave propagation. 

 



Bale 

6 CREWES Research Report � Volume 14 (2002)  

 Table 1. Staggered node properties 

Node Indices Physical properties 

♠ (i, j, k) 3)kj,(i,   ,,, ≤ijzzyyxx Cσσσ :  

♦ (i+½, j, k) ρ,, xx fu  

♠ (i, j+½, k) ρ,, yy fu  

♥ (i, j, k+½) ρ,, zz fu  

♦ (i+½, j+½, k) 66,Cxyσ  

♣ (i+½, j, k+½) 55,Cxzσ  

♥ (i, j+½, k+½) 44,Cyzσ  

♣ (i+½, j+½, k+½) Unused 

 
Table 2. Stress-strain equations on staggered nodes  

Node Indices Stress-strain equations 

♠ (i, j, k) : (i<4,j<4) 

zzyyxxzz

zzyyxxyy

zzyyxxxx

uDCuDCuDC

uDCuDCuDC

uDCuDCuDC

−−−

−−−

−−−

++=

++=

++=

333231

232221

131211

σ

σ

σ

 

♦ (i+½, j+½, k) ( )yxxyxy uDuDC ++ += 66σ  

♣ (i+½, j, k+½) ( )zxxzxz uDuDC ++ += 55σ  

♥ (i, j+½, k+½) ( )zyyzyz uDuDC ++ += 44σ  
 

Table 3. Equations of motion on staggered nodes  

Node Indices Equation of motion 

♦ (i+½, j, k) xxxzzxyyxxx fuDDD +=++ −−+ !!ρσσσ  

♠ (i, j+½, k) yyyzzyyyxzx fuDDD +=++ −+− !!ρσσσ  

♥ (i, j, k+½) zzzzzyzyxzx fuDDD +=++ +−− !!ρσσσ  
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For anisotropy with symmetries of lower order than orthorhombic, or when the axis of 
anisotropy is not aligned with the grid, this is no longer possible (Igel et al., 1995).  In 
this case we must use shifting operators ±±

yx SS , and ±
zS , of the form given in equation 6, 

to relocate strains prior to the multiplication by the stiffness matrix.  For example, if 
064 ≠C , then we must map ( )yzzyyz uue ,,21 +=  from node (i, j+½, k+½) to node (i+½, 

j+½, k) using −
zS followed by +

xS , as depicted for the 2D case in Figure 2.  I refer to these 
parts of the stiffness matrix as �non-aligned�. 

 

FIG. 2:  Shift operations for applying C64 to eyz . These introduce unavoidable ringing artifacts. 

Note that we can choose at which point during this shifting operation to multiply by 
the stiffness matrix.  This flexibility is now exploited to simplify the computation. With 
an appropriate choice of nodes for the ijC  values, the complete staggered stiffness matrix, 
including required shift operations can be written as: 
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which can be factorized as follows: 

 −++= SCSCC BAstag , (9) 
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where  
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where again, absent values indicate zeros. 

The stress-strain equation is then written in matrix form as follows: 

 ( )
BA

BA

stag

σσ
eSCSC

eCσ

+=
+=

=
−+ . (10) 

Based on equation (10) the diagonal shift matrices ±S  can now be applied as pre- and 
post-multipliers to handle the non-aligned terms, as follows: 

1. Multiply the strain vector e by CA using the staggered grid definitions in 
Tables 1-3.   This gives the �aligned� stress vector Aσ .  No shifting operations 
are required. 

2. Pre-multiply the strain vector e by −S .  This has the effect of mapping all 
strain grid nodes to (i,j,k), the original grid. 

3. Multiply by CB to determine �non-aligned� stresses at these nodes.  
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4. Post-multiply the stress vector by +S  to return them to their staggered nodes.  
This yields the �non-aligned� stress vector Bσ . 

5. Sum Aσ  to Bσ  to get the total stress. 

The need to apply shifting operators is regrettable, as it reintroduces the Nyquist 
discontinuities (and hence the resulting artifacts) for those terms in the equation, but it 
appears unavoidable.  The scheme described above ensures that those �aligned� stress 
terms, Aσ , that conform to orthorhombic symmetry are devoid of artifacts, and only the 
�non-aligned� stresses, Bσ  are adversely affected. 

Use of complex FFTs 
As remarked in Carcione et al. (2002), it is possible to compute the pseudospectral 

derivatives of two grid lines simultaneously using complex FFTs.  The procedure is to 
place one function in the real part and one in the imaginary part, feed the result to a 
complex FFT routine, multiply the result by �ik, and then inverse FFT the output.  The 
real part and imaginary parts are the derivatives of the two lines.  However, this 
procedure assumes both inputs and outputs are real functions, implying hermitian 
symmetry of their Fourier transforms (in particular a real Nyquist value).  Hence this can 
only strictly be applied in conjunction with staggered grids, such that the odd derivatives 
are indeed purely real functions.  This is true for the aligned case, but not for the non-
aligned case (if 0≠BC above).  In the examples below, I simply zero the Nyquist 
component for this case (e.g. in Figure 7(d)-(f)). 

EXAMPLES 
To test the effect of staggering I use a 3D model (Figure 3) consisting of a low-density 

isotropic cube, enclosed in a higher density medium, which is transversely isotropic with 
a horizontal symmetry axis (HTI).  Modelling is done using a grid of size nx=ny=nz=128 
and ∆x=∆y=∆z=20m.  The source is a vertical point force at the center of the grid, with a 
zero-phase Ricker time signature.  Two different anisotropic cases are modeled. 

Figure 4 shows the different structures of the stiffness matrix for the outer medium in 
the two HTI cases.  The first (Figure 4a) has an axis of symmetry which is aligned with 
the grid x direction.  The second (Figure 4b) has an axis of symmetry that is at 45° from 
the x axis.  Note that this rotation of the symmetry axis relative to the grid generates 
further non-zero stiffnesses, which are not �aligned�, and so cannot be staggered exactly. 

Figure 6 shows, highly amplified, the early time (100ms) wavefield for the model in 
Figure 3, with the HTI symmetry axis of the outer medium aligned with the x direction 
(Figure 4(a)).  The geometry of the constant y and constant z slices used are indicated in 
Figure 3.  The plots in the left hand column, (a)-(c), show modelling on a standard (non-
staggered) grid.  The non-local behaviour of the odd derivative operators interacts with 
the presence of material property changes at the cube sides, and gives rise to the artifacts 
in these snapshots.  Compare these with the right hand column plots, (d)-(f), where the 
modelling has been repeated for the same model, but using a staggered grid.  Since the 
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stiffness matrix is �aligned� for this case, the staggered approach does a very good job of 
suppressing the non-causal artifacts. 

In Figure 7, plots (a)-(c) show the result of modelling on a standard grid, for the model 
in Figure 3, with the HTI symmetry axis of the outer medium at 45° to the x direction 
(Figure 4(b)).  As before we see artifacts arising at the cube sides.  Compare these with 
(d)-(f), where the modelling has been repeated for the same model, but using a staggered 
grid.  The staggered grid modelling reduces most of the artifacts.  However, the 
horizontal slice for the vertical component, (e), displays artifacts which arise from the 
non-aligned terms in the stiffness matrix.  These terms require shifting operations applied 
to the stress and strain vectors in order to map to them to common grid nodes (see 
equation (10)), and the shifting operations introduce the artifacts.  

 

 (a)    (b)  

(c)  

FIG. 3: Elastic properties of 3D model used to test staggered grid modelling.  The model consists 
of an isotropic cube, 1280 meters (64 grid points) on a side, inside an HTI medium. Properties are 
displayed along three slices, perpendicular to the grid axes, through the source position at the 
center of the cube. The figures show the fast velocities for VP (a) and VS (b), in m/s.  The 
velocities inside the cube are VP=3000 m/s and VS=2000 m/s.  The density (c) is 2000 kg/m3 
inside the cube, and 2500 kg/m3 elsewhere.   



Staggered grids for anisotropic modelling 

 CREWES Research Report � Volume 14 (2002) 11 

(a)           (b)   

FIG. 4: Stiffness matrices.  Each square is grey-scale coded in GPa for the value of the element 
in that position.  For an HTI axis aligned with the x axis, (a), the only non-zero terms are in the 
upper left quadrant and the lower right diagonal.  When the HTI axis is rotated 45° from the x 
axis, (b), the matrix has further non-zero terms, which cannot be exactly staggered. 

 

FIG. 5: Phase velocities as a function of azimuth relative to principal axes.  

CONCLUSIONS 
The use of staggered grids improves the fidelity of pseudospectral modelling, 

removing unwanted non-causal artifacts.   It does so by forcing the phase spectrum of the 
odd derivatives to have continuity at the Nyquist wavenumber, resulting in spatially 
compact operators.  Staggered grids may be constructed which achieve this exactly for 
3D anisotropic media with orthorhombic or higher symmetries, provided the symmetry 
planes are aligned with the grid.  When this is not the case, then the stiffness matrix may 
be decomposed into aligned and non-aligned parts, with shift operators used to assist the 
staggering on the non-aligned part.  This results in an imperfect solution, but the artifacts 
are nonetheless considerably suppressed.  These observations are supported by a simple 
3D example of an isotropic cube in an anisotropic background. 
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STANDARD GRID       STAGGERED GRID 

(a)     (d)  

(b)     (e)  

(c)     (f)   

FIG. 6:  Standard (a-c) vs. staggered (d-f) grid modelling in model of Figure 3 with HTI symmetry 
axis along x direction.  Snapshots are after 100ms through elastic wavefield along planes of 
Figure 3.  Shown are: (a,d) vertical (Z) component for constant y plane; (b,e) vertical component 
for constant z plane; (c,f) inline (X) component for constant y plane.  Material changes at cube 
sides reveal non-causal ringing artifacts on standard grid, which are suppressed by staggering. 
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STANDARD GRID       STAGGERED GRID 

(a)     (d)  

(b)     (e)  

(d)     (f)  

FIG. 7:  Standard (a-c) vs. staggered (d-f) grid modelling in model of Figure 3 with HTI symmetry 
axis at 45° to x direction.   Snapshots are after 100ms through elastic wavefield along planes of 
Figure 3.  Shown are: (a, d) vertical (Z) component for constant y plane; (b, e) vertical component 
for constant z plane; (c, f) inline (X) component for constant y plane.  The residual artifacts in (d) 
and (e) are a result of the non-aligned terms in the stiffness matrix (Figure 4(b)). 


