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Rays in transversely isotropic media  

P.F. Daley 

ABSTRACT 
The theory of characteristics related to the solution of partial differential equations of 

the hyperbolic type is applied to the coupled VqP qS−  wave propagation problem in a 
transversely isotropic (T.I.) medium. The characteristics or rays are the paths along which 
energy is transported from one point to another in any media type. The determination of 
ray paths in such a media type is often a preliminary step in addressing more complex 
problems in anisotropic wave propagation such as amplitude computations and the 
related polarization vectors, quantities that are significantly more difficult to obtain in 
any type of anisotropic medium when compared with the isotropic case. 

Equations for tracing the progress of a ray through a homogeneous T.I. medium, 
which has applications in several areas of seismology, will be presented. The problem of 
reflection and refraction at an interface separating two T.I. media has been treated in an 
earlier report. Used with the results presented here, a method will be developed to explore 
two-point ray propagation in media where the rotationally invariant axis of the T.I. wave 
front is not aligned with the interfaces separating two media and some simple results 
shown. 

INTRODUCTION 
The partial differential equations arising in seismological related problems are 

generally linear second order hyperbolic. It is difficult, if not impossible, to consult a text 
on partial differential equations of the hyperbolic type, or systems thereof, and not be 
presented with at least an introduction to the method of characteristics in the solution of 
this equation type. It is a powerful method, which has been well developed from a 
theoretical point of view, and there are numerous classical practical applications. A 
simplistic overview of the basis of this method is that a Hamiltonian or eikonal equation 
that is a nonlinear partial differential equation, homogeneous in powers of order 2 in 
terms of the partial derivatives of the spatially dependent phase function may, given 
certain minimal criteria, be solved for the paths (rays) along which the energy propagates. 
This, together with an amplitude term (the solution of an energy transport equation), is 
usually assumed to comprise a solution of the original hyperbolic problem. 

As the theoretical aspects of the most general form of this problem have been treated 
by a number of authors in diverse publications, only a brief summary of their results will 
be given here. The degenerate case of ellipsoidal transverse isotropy will be discussed as 
it contains most of the inherent concepts of wave propagation in a T.I. medium, and many 
solution quantities may be obtained in relatively simple closed form. As two-point ray 
tracing procedures are numerical in nature, a trial solution may be obtained using 
ellipsoidal theory and employed in the iterative process of the more complex general 
case. Both unconverted and converted ray propagation will be considered. 
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THEORETICAL OVERVIEW 
In a generally inhomogeneous anisotropic medium in a Cartesian coordinate system, 

the equations of motion are given by 
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, 1,3jU j =  are the components of the of the particle displacement vector, U ; ρ  is the 
density; ijklc , the anisotropic parameters; and t is time. The density and anisotropic 

parameters are generally spatially ( )ix  dependent. (Cerveny and Psencik, 1972; Cerveny, 
1972, and Vlaar, 1968). 

The geometrical optics, or Asymptotic Ray Theory (A.R.T.) solution of the above 
equation, has the general form 

 
( ) ( ) ( )( )

0

, n
k i k i n i

n
U x t A x f t xτ

∞

=

= −  ∑
 (2) 

for some amplitude terms, ( )( )n
k iA x , which are dependent only on the spatial 

coordinates. In the above, t  refers to time. The aspect of the problem involving the 
energy transport along the rays will not be discussed here as it warrants a separate, fairly 
mathematically intensive treatment. The second expression in the thn  term in the 
asymptotic series in equation (2), ( )nf ζ , is a generalized function containing a phase-

dependence, ( )ixτ . The wavefront moving through the anisotropic medium is assumed 
to be described by the equation  

 ( )it xτ= . (3) 

The function ( )nf ζ  is chosen with the property that 
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A function type that is commonly used in seismological applications of the elastodynamic 
problem, including the aforementioned phase function, ( )ixτ , is the time harmonic 
expression, 
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Substitution of equation (2) into equation (1) and considering only those equations 
which are related to the leading or zero order term in the asymptotic series, yields a third 
order polynomial whose solution provides three possible eikonal equations, homogeneous 
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in powers of two in the slowness vector components, ( )1, 2,3ip i = , ( )( )i j ip x xτ= ∂ ∂ . 

After the above substitution, the zero order equation in terms of ( ) ( )0
ixΑ  is obtained as 

 ( ) ( )0 0 0jk k jA AΓ − = , (6) 

where 

 ,jk i ijk ijk ijkp p a a c ρΓ = =! ! ! !  (7) 

and the ijka !  have the dimensions of velocity squared. Explicit expressions for the jkΓ  in 
the case of a transversely isotropic medium may be found in Cerveny and Psencik (1972) 
and for completeness are given in the Appendix. The existence of a nontrivial solution of 
equation (6) is contingent on ( ) ( )0

ixΑ  not being identically equal to zero, thus requiring 
that the following condition be satisfied: 

 ( )det 0jk jkGδΓ − = . (8) 

The normalized eigenvectors obtained from introducing the solutions of equation (8) into 
equation (6) are the most often referred to in the geophysical literature as polarization 
vectors associated with one of the three distinct propagation modes. These polarization 
vectors should more accurately be prefixed with �zero order� as higher order terms in the 
asymptotic series introduce additional components or component additions (Cerveny and 
Ravindra, 1970 and Daley and Hron, 1977). 

The three values that the eigenvalue or characteristic value, G , may have yield the 
eikonal equations corresponding to the quasi-compressional, qP , propagation mode and 
two quasi-shear modes, VqS  and HqS . As Γ  is positive definite, the eigenvalues are real 
and positive and in general, unique. This is referred to in numerical analysis as the 
irreducible case. In special cases a variable transformation will put the cubic equation in a 
form that may be solved to obtain three analytic expressions for the eigenvalues. 
Schoenberg and Helbig (1996) present the solutions for an orthorhombic media; however, 
for a generally anisotropic medium, numerical methods must be used: 

 ( ) ( ) ( ), 1, 1,2,3 1,2,3i iG x p i= = =! ! , (9) 

where ip  are were previously defined as 
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and are the components of the slowness vector, 
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 ( )1 2 3, ,p p p=p . (11) 

Each of the three modes of propagation modes has, in general, a unique eikonal equation 
and hence slowness surface. An exception to this is the isotropic case where the eikonals 
of the two shear modes are identical or degenerate. 

The quantity ( ),i iG x p!  is a homogeneous function of order 2 in ip . From Euler�s 
theorem on homogeneous functions, the relations, 
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are obtained. Additionally, the eikonal or, equivalently, the characteristic equations, 
sometimes also referred to as Hamiltonians, are nonlinear partial differential equations 
whose solutions define the characteristics or rays of the corresponding eikonal. The 
equations of the characteristics of these partial differential equations may be written as 
(Courant and Hilbert, 1962): 
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If the initial conditions, 0
ix=x  and 0

ip=p  are known at some time, 0t , the above set of 
coupled ordinary differential equations may be solved for ( )tx  and ( )tp . This may be 
done numerically if the ijkc !  are arbitrary functions of position, using methods such as a 
Runge-Kutta algorithm. An orthogonal coordinate system, comprised of the tangent to a 
point on the ray and the two vectors defining the tangent plane to the energy propagation 
surface at this point, are referred to as ray-centred coordinates and are useful in many ray 
tracing and amplitude determination applications.(Gassmann, 1964, Psencik, 1979 and 
Cerveny and Hron, 1980). 

The order 3, rank 4 tensor, cijkl, with 21 generally independent members is usually 
replaced in seismological problems by the 6 6×  symmetric matrix Cmn (Musgrave, 1970), 
whose elements have the dimensions of velocity squared, using the standard scheme: 

 |ij k mnc C→! . (15) 

This simplification is made subject to the following replacements: 
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TRANSVERSE ISOTROPY: ELLIPSOIDAL 
As a transversely isotropic medium is rotationally invariant, chosen here to be with 

respect to the vertical, z , axis, the slowness vector may be reduced to a radial and 
vertical component so that, ( )1 3,p p=p . It will be convenient here to adopt the notation 

changes, ( ) ( )1 3, ,x x x z→  and ( ) ( )1 3, ,p p p q→ . The ellipsoidal anisotropic eikonal for 
qP  wave propagation may be written in the form 

 ( ) 2 2
11 33, , , 1qPG x z p q A p A q= + =   (17) 

The coefficients, iiA , which have the dimensions of velocity squared, are related to the 

mnC  as mn mnA C ρ= . Their relationship to the ijkl ijkla c ρ=  was given in the previous 
section. 

The anisotropic parameters, 11A  and 33A , may be arbitrary functions of position; 

( ) ( ), , 1,3ii iiA A x z i= = . Assuming that the initial values ( )0 0,x z  and ( )0 0,p q  at 0t  are 
known, a solution may be determined for equations (8) and (9) which, for this case, may 
be written as: 

 11
dx p A
dt

=  (18) 

 33
dz q A
dt
=  (19) 

 2 211 331
2

dp A Ap q
dt x x

∂ ∂ = + ∂ ∂ 
 (20) 

 2 211 331
2

dq A Ap q
dt z z

∂ ∂ = + ∂ ∂ 
. (21) 

The above system of ordinary differential equations may be solved numerically to 
yield the characteristic paths or rays along which energy is transported provided they also 
satisfy the eikonal equation from which they were derived. Clearly, equations (18) and 
(19) satisfy Gauss�s theorem. The quantities, dx dt  and dz dt , are the Cartesian 
components of the ray velocity vector, ( )αrv , α  being the angle the ray angle relative to 
some coordinate, usually the vertical, while dp dt  and dq dt  are the time derivatives of 
the components of the slowness vector and implicitly contain information related to the 
anisotropic equivalent of Snell�s Law for media with lateral and/or vertical variations of 
the anisotropic parameters, iiA . The system of equations for the VqS  ellipsoidal case is 
similar to the above with the exception that 11A and 33A are both replaced by 55A , implying 
a spherical energy propagation surface. 

In addition to the above set of equations, it has been stated that the eikonal equation 
must be satisfied along the total length of the rays. As a consequence, one of the above 
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four differential equations may be eliminated and replaced by the eikonal. A more 
conservative approach is to numerically solve the system of ordinary differential 
equations and use the eikonal as a check on the accuracy of the method used. 

Consider now the above problem simplified further, in that the coefficients 11A and 33A  
are independent of the spatial coordinates: i.e., they are constant in the medium being 
considered. For this case, 0dp dt dq dt= =  along the whole ray resulting in the rays 
being forced to follow straight line trajectories. 

The magnitude of the ray velocity, ( )rv α , is obtained from equations (18) and (19) 
and is given by: 

 ( )
1/ 22 2

.r
dx dz dsv
dt dt dt

α
     = + =         

 (22) 

The quantity s  is the length of the ray segment and the angle, α , which the ray makes 
with the vertical ( )z  axis, is defined in terms of the associated slowness or phase 
(wavefront normal) angle, θ , as  

 θα tantan
33

11

A
A

dtdz
dtdx
== . (23) 

The horizontal and vertical components of slowness, ( )qp,  may be expressed in terms of 
the phase angle, θ , and the phase angle dependent phase (wavefront normal) velocity as 

 ( ) ( )θ
θ

θ
θ

NN V
q

V
p cos,sin

==  (24) 

where the normal velocity, ( )NV θ , is obtained from the eikonal equation (9) using the 
above two relationships for the qP  mode propagation, as 

 ( ) 1/ 22 2
11 33sin cosNV A Aθ θ θ = +   (25) 

and for the VqS  mode 

 ( ) 55NV Aθ =  (26) 

Utilizing (22) and (23), the following expression for the qP  ray velocity may be obtained  

 ( )
2 2

2
11 33

1 sin cos

rv A A
α α

α
= +

 (27) 

indicating that the ray surface, the surface which transports the energy through the 
medium, is an ellipsoid of revolution about the vertical axis. The equations defining the 
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magnitude of the ray velocity and the ray angle allow for the full specification of the ray 
velocity vector, rv . In the VqS  case, the energy propagation surface is spherical; but it 
should be noted that the polarization vector for this propagation mode is not in general 
perpendicular to the ray as in a comparable wavefront type in an isotropic medium. 

At an interface between media in welded contact, the anisotropic equivalent of Snell�s 
Law states that the horizontal component of the slowness vector, p , is the same for all 
wave types, both reflected and refracted, resulting from the incidence of a given 
wavefront type. The vertical component of slowness, ,q  may then be obtained from the 
eikonal equation. 

The problem with the above is that the change in ray angle, α , and the corresponding 
value of the ray velocity, ( )rv α , for the reflected or transmitted wave is usually required. 
For the case of ellipdoidal anisotropy, Snell�s Law at a boundary may be written in terms 
of ray quantities, rather than wavefront normal (phase) or slowness, as it may be shown 
using (22) that the following holds for an ellipsoidally anisotropic medium: 

 ( )
11

sinrv
p

A
α α

= , (28.a) 

for qP  propagation; and for the VqS  mode, 

 
55

sinp
A
α

= . (28.b) 

This is the only type of anisotropy where a relationship of this type may be derived in 
such a simple form.  

It is also not difficult to show that the normal at some point, ( ),p q=p , on the 
slowness surface defines the corresponding ray direction. The inverse of this is also valid: 
the normal to the ray surface at a point corresponding to a specific ray defines the 
slowness vector angle. 

TRANSVERSE ISOTROPY: COUPLED P-SV MOTION 

The eikonal equations for qP  and VqS  wave propagation in a general transversely 
isotropic medium may be obtained by a slight modification of those presented by 
Gassmann (1964) as: 

 ( ) ( ){ }1/ 22 2
11 33, , , 1 4 1 1

2qP D
AG p q x z A p A q α ε= + + + − =  (29.a) 

 ( ) ( ) ( ){ }1/ 22 2
55, , , 1 4 1 1

2VqS D
AG p q x z A p q α ε= + − + − =  (29.b) 

Quantities in the above, which require definition, are: 
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 ( ) ( )2 2
11 55 33 55A A A p A A qα = − + −  (30) 

 
2 2

2
D

D
A p q

Aα
ε =  (31) 

 ( ) ( )( )2
13 55 11 55 33 55DA A A A A A A= + − − − . (32) 

If equations (8) and (9) are applied to the eikonal equations defined above, the following 
results are obtained for the horizontal and vertical components of the ray velocity where 
" "+  refers to qP  and " "−  to VqS  ray propagation: 

 ( ) ( )1/ 22
11 552 2 2

11 552 4 2D D

A A AAdx p A A A p q A q
dt

αα

− −   = + ± + +    
     

 (33) 
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33 552 2 2

33 55 .
2 4 2D D

A A AAdz q A A A p q A p
dt

αα

− −   = + ± + +    
     

 (34) 

The expressions for dp dt  and dq dt  have been omitted as it will be assumed that the 
anisotropic parameters, ijA , are spatially independent so that both dp dt  and dq dt  are 
equal to zero. 

As in the ellipsoidal case, the ray velocity is given by: 

 ( )
1/ 22 2

r
dx dzv
dt dt

α
     = +         

; (35) 

or equivalently, 

 ,dx dz
dt dt

 =  
 

rv , (36) 

and the ray angle with respect to the vertical spatial axis is obtained from equations (31) 
and (32) as: 

 tan dx dt dx
dz dt dz

α = = . (37) 

To summarize to this point, given the anisotropic parameters, ijA , the eikonal equation 
and spatial location of the origin at some initial time, 0t t= , a ray, either qP  or VqS  may 
be traced in the medium of interest. Further, the ray path at any time may be specified 
together with its velocity and the angle it makes with the vertical axis. 

If the ray encounters an interface where it may either be reflected or transmitted, the 
anisotropic equivalent of Snell�s Law must be introduced into the computation. This topic 
has been dealt with in an earlier report (Daley, 2001) and the reader is referred there for a 
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more comprehensive treatment. Formulae for the generalized form of Snell�s Law in 
transversely isotropic media, where the anisotropic axes need not be aligned with the 
model axes, are given there. For continuity, a brief discussion of specific topics from the 
above paper will be included in a subsequent section. 

 

FIG. 1: The unrotated qP  and VqS  ray surfaces for the layer model being 
considered. The axis coordinates are an indication of velocity. 

RAY TRACING IN A ROTATED T.I. MEDIUM 
In a plane parallel-layered model, composed of T.I. media in which the axis of 

anisotropy in each layer is not required to be aligned with the model axis, two-point ray 
tracing generally involves solving a number of nonlinear equations for Snell�s Law 
embedded in a nonlinear equation for the two point ray tracing equation. For a plane N-
layered medium, this equation may be written in algorithm form as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1

tan tan

tan tan 0V V V V

N N
qP qP qP qP

j j j j j j
j j

N N
qS qS qS qS

j j j j j j
j j

r n h n h

n h n h

α α

α α

↓ ↓ ↑ ↑

= =

↓ ↓ ↑ ↑

= =

− − −

− =

∑ ∑

∑ ∑
. (38) 

In the above, the following quantities require definition: 
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r −  horizontal distance between source and receiver; 

jh −  thickness of the thj  layer; 

( )qP
jn −  number of qP  ray segments travelling downwards ( )↓  or upwards ( )↑  in the 

thj  layer; 

( )VqS
jn −  number of VqS  ray segments travelling downwards ( )↓  or upwards ( )↑  in 

the thj  layer; 

( )qP
jα −  the acute angle a downward ( )↓  or upward ( )↑  propagating qP  ray segment 

in the thj  layer makes with the vertical model axis; 

VqS
jα −  the acute angle a downward ( )↓  or upward ( )↑  propagating VqS  ray segment 

in the thj  layer makes with the vertical model axis. 

Equation (38) simplifies to the following two equations in the case of one layer over a 
halfspace for incident and reflected qP  ray segments, and an incident qP  ray and a 
reflected VqS  ray. 

 ( ) ( )
1 1 1 1tan tan 0qP qPr h hα α↓ ↑− − = . (39) 

 ( ) ( )
1 1 1 1tan tan 0VqP qSr h hα β↓ ↑− − =  (40) 

Not much is gained by considering a complex media composed of many layers and ray 
segments as all of the theory presented is used in these simple cases, and the results may 
be displayed in a manner that may be more indicative of what the effects are of rotating 
the axis of anisotropy with respect to the model axis on the reflected qP qP−  and 

VqP qS−  arrivals. 

Both of the ray angles that are required to be determined in equations (39) and (40), 
( )qPα  and ( )VqSα  are functions of the incident phase angle ( )qPθ  or equivalently a function 

of the horizontal slowness, p . The solution of the nonlinear two-point ray-tracing 
equation may be formulated in either of these variables. For a many-layered plane 
interface model, the parameterization is usually done in terms of ( )qPθ  or p  in the layer 
where the fastest propagating ray segment exists. This layer may change with angle so 
that a certain amount of extra computer code must be written to accommodate this. 

In a medium where the axes of anisotropy in each plane layer are aligned with the 
interfaces, the ( )↓  and ( )↑  quantities are equal and hence additive for a given mode 

propagation, either VqS  or qP . 
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For a structure with curved or dipping interfaces, the above procedure must be 
modified and a ray code specified, with each ray segment in the ray code being treated 
sequentially. When considering curved-layer models the possibility of multiple travel 
time branches for a given ray must also be considered. 

 

FIG. 2: Analogy of Snell�s Law for rotated slowness surfaces in a transversely 
isotropic media. The reflected angle of either the qP qP−  or VqP qS−  reflected 
arrival is obtained from the highlighted right-angle triangle nonlinear problem in 
each of the schematics. (See Daley (2001) for a more detailed discussion.) 

NUMERICAL RESULTS 
A model consisting of a T.I. plane-layer over a halfspace with the rotationally 

invariant axis not aligned with the model axes defined by the plane interface will be used 
to demonstrate two point ray tracing techniques. The anisotropic parameters defining the 
layer are 2 2

11 16.0A km s= , 2 2
33 9.0A km s= , 2 2

55 3.0A km s=  and 2 2
13 4.6158A km s= , 

and the rotationally invariant axis is at an angle of 30φ = "  with respect to the vertical 
model axis measured positive clockwise. The layer thickness is 2.0km . The unrotated 
qP  and VqS  ray surfaces are displayed in Figure 1 and it may be seen from this figure 
that there are no triplication points on either surface. This phenomenon would greatly 
increase the complexity of the computer code and is presently being evaluated as to 
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whether it should be pursued. In what follows, all incident and reflected angles are the 
acute angles measured with respect to the vertical axis, either in the model or rotated 
(primed) systems. 

At an interface where there is reflection, transmission, or mode conversion of rays, the 
horizontal component of slowness is required to remain constant. The reference plane is 
the tangent to the interface at the point where any of the above takes place. This is a 
generalized version of Snell�s Law and is shown schematically for a situation similar to 
what will be discussed here in Figure 2. This generalized Snell�s Law has the form, 

 ( ) sin 0N r rpV θ θ′ − = ; (36) 

or in terms of only rθ  as: 

 ( ) sin 0N r rpV θ φ θ− − = . (37) 

The definitions of rθ , rθ ′ , and φ  may be inferred from Figure 2. The value of p is the 
horizontal slowness in the model system and the phase (wavefront normal) velocities for 
both the qP  and VqS  in the primed system may be obtained from substituting the 
expressions for the slowness vector components, p and q, from equation (19) into the 
eikonal equations given by equations (24a) and (24b). 

As mentioned the two-point ray-tracing technique will be demonstrated using the 
previously specified single-layer model and a common shot configuration. The source 
will be assumed to be located at zero offset and surface receivers will be located from 

2.5km−  to 2.5km  at 0.05km  intervals. The qP qP−  ray diagrams and traveltime curve 
are shown in Figure 3 while the VqP qS−  case is displayed in Figure 4. 

The method of solution of the outer nonlinear equation involving the two-point ray 
tracing is dependent on the type of problem being considered. For the common source 
case treated here, it is required that two rays be determined such that one arrives at a 
surface position less than the minimum offset being considered and one at a point greater 
than the maximum offset. Once a specific set of quantities involving these two rays are 
known, all of the intermediate rays comprising the common shot array may be 
determined within a prescribed tolerance in usually less than 6 iterations if the method of 
false position (regula falsi) is used. Other techniques may be indicated for different 
applications. The inner tier of nonlinear equations involving Snell�s Law computation has 
been set constant as Newton�s Method, not because of speed, but rather because it runs 
consistently without problems. 

CONCLUSIONS 
A brief discussion in which a summary of the theory required for ray tracing in a 

transversely isotropic medium, with arbitrary orientation of the axis of rotational 
invariance within the medium, has been presented. The special case of ellipsoidal 
anisotropy was used to address some specific topics without introducing an excessive 
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amount of mathematical complexity. Using a simple one-layered model, results were 
presented which gave at least some indication of what can be done with this technique, as 
the methods may be incorporated in both surface acquisition geometries as well as in 
vertical seismic profiling (VSP) applications. 

 

FIG. 3: The qP qP−  traveltime curve and two-point ray tracing plot of the rays 
used to introduce the method. Both the incident and reflected ray segments 
are qP . 
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FIG. 4: The traveltime curve and two-point ray plot of the rays converted at the 
interface from qP  to VqS . The ray travels from the boundary back to the surface 
as a shear wave. 
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APPENDIX: THE MATRIX Γ  AND EIGENVALUE PROBLEM 
The eigenvalues associated with a transversely isotropic media and the corresponding 

eigenvectors, known as polarization vectors, which determine the direction of particle 
motion, are obtained from the relation: 

 ( ) ( ) ( )0 0jk jk k iG A xδΓ − = , (A.1) 

where 

 2 2
11 11 1 55 3A p A pΓ = +  (A.2) 

 2 2
22 44 1 66 3A p A pΓ = +  (A.3) 

 2 2
33 55 1 33 3A p A pΓ = +  (A.4) 

 ( )13 31 13 55 1 3A A p pΓ = Γ = +  (A.5) 

 12 21 23 32 0Γ = Γ = Γ = Γ = . (A.6) 

Unless ( ) ( )0 0ix ≡A , then the following condition must hold: 

 ( )det 0jk jkGδΓ − = , (A.7) 

that yields 3 eigenvalues corresponding to the qP , VqS , and HqS  wave types. The 
corresponding eigenvectors, or polarization vectors indicate the direction of particle 
displacement. It should be noted that the wavefront normal, the ray vector and the 
polarization vectors are not, as in the isotropic case in the same direction, being generally 
in distinct directions. 


