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ABSTRACT 
Anisotropy parameters in a VTI medium are obtained by anisotropic velocity analysis 

performed on short-spread or long-spread P-wave reflection-seismic data, in combination 
with check-shot or well-log data. Analysis of four reflection-traveltime approximations to 
the actual reflection traveltime in weakly anisotropic media shows that each reflection-
traveltime approximation has its own requirements for spread length and subsurface 
anisotropic parameters. The accuracy of the estimated Thomsen anisotropy parameter δ  
depends not only on the accuracy of the picked NMO velocity but also on the subsurface 
anisotropy parameters. The smaller the value of )( δε − , the higher the accuracy of the 
estimated δ  value. The results of the four reflection-traveltime inversions by semblance 
analysis for synthetic seismic examples demonstrate that in estimating δ , the 
nonhyperbolic and the shifted-hyperbolic estimations are better than the three-term 
Taylor-series method, which, in turn, is better than hyperbolic estimation. Only the 
nonhyperbolic approximation can be used to estimate the anisotropy parameter ε  
accurately. 

INTRODUCTION 
Alkhalifah and Larner (1994) showed that accurate 2-D imaging in transversely 

isotropic media requires good knowledge of the Thomsen anisotropy parameters δ and 
ε . There are various traveltime inversion approaches for estimating anisotropy 
parameters (Alkhalifah and Tsvankin, 1995; Brown et al., 2000; Elapavuluri and 
Bancroft, 2002; Gaiser, 1990; Isaac and Lawton, 2004; White et al., 1983) but each has 
its own assumptions and limitations. Thomsen (1986) derived relations between normal-
moveout (NMO) velocities and anisotropy parameters in a homogeneous anisotropic 
layer. In combination with check-shot or well-log data, we are able to use various 
analytic reflection-traveltime approximations over limited spread-lengths to obtain 
anisotropy parameters in VTI media by NMO-velocity analysis and through a Dix-type 
differentiation procedure. Besides hyperbolic approximation, a popular approach for 
estimating anisotropy is a modified three-term Taylor series approximation to the 
reflection moveout curve (Tsvankin and Thomsen, 1994; Alkhalifah and Larner, 1994; 
Tsvankin, 1995). 

If one ignores the contribution of the vertical shear-wave velocity, a modified three-
term Taylor-series approximation to the reflection moveout curve can be fully determined 
by two parameters, NMOV  (NMO velocity) and η  (= ( ) ( )1 2ε δ δ− + ; Alkhalifah and 
Tsvankin, 1995), or by NMOV  and  hV  (horizontal velocity). Based on the nonhyperbolic 
moveout equation developed by Tsvankin and Thomsen (1994), a 2-D semblance scan 
can be used to estimate anisotropy parameters. For convenience, we refer to this method 
as nonhyperbolic reflection-traveltime inversion. Elapavuluri and Bancroft (2002) 
showed the shifted hyperbolic approximation can also be used to estimate anisotropy 
parameters from P-wave reflection data. 
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In this paper, we compare the traveltime approximations of four reflection-traveltime 
inversions (hyperbolic, modified three-term Taylor-series, shifted-hyperbolic and 
nonhyperbolic traveltime inversions) with the exact traveltimes in VTI media. We then 
carry out these four inversions on synthetic seismic data examples and try to determine 
the relationship between the estimated anisotropy parameters and the true anisotropy 
parameters. Finally, we formulate some conclusions for guiding the application of these 
approximations. 

REFLECTION TRAVELTIME APPROXIMATION 
Using an approximation of the exact eikonal equation in the quasi-compressional case 

for so-called weak anisotropy (Daley, 2001) and relations between phase and group 
velocity and between phase and group angle (Thomsen, 1986), we developed multilayer 
ray-tracing code for modelling real traveltime-offset curves (blue solid line in Figure 1). 

The P-wave traveltime approximations for four reflection-traveltime inversion 
methods are given as follows. 

1) The hyperbolic reflection-traveltime approximation: 
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0α  is vertical velocity for P waves,  δ  is Thomsen’s anisotropy parameter, NMOV  is 
NMO velocity, and 0t  and t  are the two-way traveltimes for zero-offset and offset x , 
respectively. 

2) The modified three-term Taylor-series approximations (Tsvankin and Thomsen, 
1994) limited to weak anisotropy: 
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and the parameters 2A  and 4A  are Taylor-series coefficients. 

3) The shifted-hyperbolic approximation (Castle, 1994): 
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and S  is the shift parameter. 

4) The nonhyperbolic approximation: 
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For P-waves, the fourth-order Taylor-series coefficients, valid for arbitrary transverse 
isotropy (Tsvankin and Thomsen, 1994), are: 
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where 0β  is vertical SV-wave velocity; ε  is a Thomsen’s anisotropy parameter, and hV  
is horizontal velocity for P-waves. If one ignores the contribution of the vertical shear-
wave velocity, which is negligible (Tsvankin and Thomsen, 1994; Tsvankin, 1995), we 
obtain the nonhyperbolic reflection-traveltime approximation (equation (8)) for P-waves 
in VTI media by substitution of equations (9) and (10) into equation (3). 

Figure 1 shows examples of all four approximations to the exact reflection traveltime 
in which the following can be observed: 

1) When 0=−δε  (elliptical anisotropy), the three approximations reduce to the exact 
traveltime (Figure 1a). 

2) When 2.00 ≤−< δε , all four closely approximate the exact traveltime for short 
spreads, but the hyperbolic and the three-term Taylor-series traveltimes deviate 
increasingly from the actual traveltime with increasing spread length (Figure 1b). 

3) When 2.0>−δε , both the shifted hyperbolic and nonhyperbolic traveltimes 
approximate closely the actual reflection traveltime; the three-term Taylor-series 
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approximation is quite poor, and the hyperbolic approximation deviates grossly from the 
actual reflection traveltime, even for a short spread (Figure 1c). This demonstrates that 
traveltime approximations depend both on anisotropy parameters and on spread length.  
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FIG. 1. Reflection-traveltime approximation to true reflection traveltime. Solid blue line: the exact 
traveltime; red dotted line: hyperbolic approximation; green dash-dot line: the three-term Taylor-
series approximation; red solid line: the shifted-hyperbolic approximation; cyan dashed line: 
nonhyperbolic approximation. 

ESTIMATION OF THOMSEN’S ANISOTROPY PARAMETERS 

For simplicity, we consider a series of single-layer case in order to determine how 
both actual anisotropy parameters and spread length affect the estimation of anisotropy 
parameters. The input CMP gather for anisotropy-parameter estimation contains a single 
reflection from a flat interface. The depth of this interface is 500 m. Vertical P- and S-
wave velocities above the reflector are 3000 m/s and 1500 m/s, respectively. The values 
of ε  are fixed at 0.2, 0.1, and 0.0, respectively, and those of δ  range from –0.2 to 0.2 at 
increments of 0.02. 

Using equations (1), (3), (5), and (8), we can pick up effective coefficients 2A , 4A , 

NMOV , hV  and S , and then obtain anisotropic parameters ε  and δ  by using equations 
(2), (4), (6), and (10) through a Dix-type differentiation procedure (here, vertical P-wave 
velocity 0α  is known from well logs, check-shots, or VSP). Semblance scanning is 
employed to estimate effective coefficients.  
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FIG. 2. Semblance plots using nonhyperbolic approximation for anisotropic parameters: (a) 
2.0=ε , 2.0=δ ; (b) 2.0=ε , 1.0=δ ; (c) 2.0=ε , 2.0−=δ . 
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FIG. 3. The error in estimated δ  plotted against true δ  when offset/depth = 1.0. Blue solid line: 
the exact anisotropic parameters; purple dotted line: hyperbolic traveltime inversion; green dash-
dot line: the modified three-term Taylor-series inversion; red solid line: the shifted hyperbolic 
inversion; cyan dashed line: nonhyperbolic inversion. 

Taking nonhyperbolic inversion as an example, by differentiation of equations (2) and 
(10), the errors in the estimated parameter δ  and ε  is given by 
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Therefore, the errors in the estimates of the anisotropy parameter δ  and ε  depend not 
only on the accuracy of the picked NMO velocity but also on the subsurface model 
parameters ( 0α , ε , and δ ). 

Figure 2 shows the semblance plots using the nonhyperbolic approximation. On the 
left, the symbol ○ represents the true values of VNMO and Vh while + represents the 
estimated values. On the right, the actual seismic arrival times (red) are plotted together 
with the traveltime curves (blue) calculated using the estimated velocities from the left. 
The close fit of actual events with those calculated from the approximated velocities 
shows that semblance analysis is capable of estimating traveltime quite well. It can also 
be seen from Figure 2 that the deviations of the estimated values from the true values 
depend on the subsurface anisotropy parameters. 
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Figures 3 shows the errors in estimated δ  plotted against true δ  when offset/depth = 
1.0, ε  values are 0.2, 0.1, or 0.0, and δ  ranges from –0.2 to 0.2 in increments of 0.02. 
From Figure 3 it appears that: 

i) the smaller the value of )( δε − , the higher the accuracy of the estimated δ  
value; 

ii) the estimated values deviate greatly from the true values when | δε − | > 0.2; 

iii) the nonhyperbolic and the shifted-hyperbolic estimations are better than the 
three-term Taylor-series method, which in turn is better than hyperbolic 
estimation. 

Figure 4 shows the errors in estimated ε  plotted versus true δ  when offset/depth = 
2.0,  ε  values are 0.2, 0.1, and 0.0, and δ  ranges from –0.2 to 0.2 in increments of 0.02. 
From Figure 4 we can see that only nonhyperbolic inversion is able to estimate 
parameters ε  with any accuracy. 
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FIG. 4. The error in estimated ε  plotted against true δ  when offset/depth = 2.0. Green dash-dot 
line: the three-term Taylor-series inversion; red solid line: the shifted hyperbolic inversion; cyan 
dashed line: nonhyperbolic inversion. 
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AN EXAMPLE FOR LAYERED VTI MEDIA 

Table 1 demonstrates the model parameters for a four-layer model. Note that all (ε − 
δ) values in Model I are less than 0.2. The only difference between Model II and Model I 
is that the value of (ε − δ) in the second layer is larger than 0.2. 

Figure 5 shows estimated anisotropy-parameter values (dashed lines) and actual values 
(solid lines). These estimations from multilayer VTI media also demonstrate that the 
estimated interval anisotropy parameters are very close to the true parameter values. Only 
when (ε − δ) is larger than 0.2 do the estimated interval parameter values depart 
significantly from the true value. 

Table 1. Model parameters for layered VTI media 

 
Thickness 

(m) 

0α  
(m/s) 

0β  
(m/s) 

 
Model I  
ε ,  δ  

 
Model II 
ε ,   δ  

500 2800 1400 0.20,  0.10 0.20,   0.10 
500 3000 1500 0.15,  0.08 0.20, - 0.20 
500 3200 1600 0.10,  0.04 0.10,   0.04 
500 3500 1750 0.08,  0.02 0.08,   0.02 

 

 

FIG. 5. Estimated anisotropy parameters for (a) Model I, and (b) Model II. Estimated δ  (dashed 
magenta line) and ε  (dashed cyan line); True δ (solid magenta line) and ε (solid cyan line);  
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CONCLUSIONS 

The accuracy of the estimated anisotropic parameter δ  depends not only on the 
accuracy of the picked NMO velocity but also on the value of )( δε − . The smaller the 
value of )( δε −  and the value of ε , the higher the accuracy of estimated δ . The results 
of the four traveltime inversions by semblance analysis for the seismic examples 
demonstrate that the nonhyperbolic and shifted-hyperbolic estimations are better than the 
three-term Taylor-series method which, in turn, is better than the hyperbolic estimation. 
Only nonhyperbolic inversion can be used to estimate accurately the anisotropy 
parameter ε . 
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