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Projection before picking: a statistical approach to tomographic 
imaging 
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ABSTRACT 
The goal of tomographic imaging with seismic data is to create a velocity image of a 

portion of the earth from a set of transit time values for some seismic event, as measured 
along a multitude of diverse paths through the target medium. These transit time values, 
one for each seismic path, are subject to various estimation errors, which can be quite 
large in the case of mis-identified seismic events. Since the process of picking the transit 
times is usually fraught with error, we propose an imaging method wherein the transit 
time variable is first associated with a unique probability density function for each input 
trace, a 3-D volume of probability-weighted transit times is created, and the volume is 
back-projected to yield a probability-weighted image volume which is less noisy than the 
raw data volume. Each surface of constant probability within the image volume 
constitutes a potential tomographic transit time image. Interpretation, in this context, then 
becomes the extraction, by one of several possible processes, of an image surface from 
the back-projected volume. Hence, by interchanging the processes of back-projection and 
picking, we avoid explicit mis-picks on noisy data. 

INTRODUCTION 

Tomography 
Conventional tomography constitutes a family of methods which image the variations 

of a physical property within a solid body from measurements of the integral of the 
property along various paths through the body. The simplest kind of tomography, which 
was first implemented with x-rays for medical purposes, is back-projection tomography, 
in which physical properties internal to a body can be mapped by combining measured 
“projections” of energy through the body at all azimuthal angles. When the variations of 
the imaged physical property within the body are small, it is assumed that the energy 
transmitted through the body follows straight line trajectories. In this case the imaging of 
the variations within the body can be done by a simple process called “back-projection”, 
which is a simple algebraic method that can be iterated to improve accuracy. A typical 
seismic application of tomography is the computation of an image of velocity (or 
slowness) variations within a solid body from measurements of transit times of seismic 
energy through the body in all possible directions. Projection tomography requires 
redundancy in the measured data; the accuracy with which the local velocity of a 
particular parcel within the body can be estimated depends strongly upon the number of 
raypath segments traversing the parcel at significantly different angles.  

Because of the physical constraints which usually control the acquisition of a 
tomographic velocity survey (sources and receivers confined to two bounding boreholes 
for a cross-well survey, for example), the various local regions within a solid body are 
rarely sampled uniformly by raypath segments. Usually, the regions nearest the centre of 
the body are the best sampled, and those nearest any boundaries are the least well 
sampled. Complicating the picture further is the fact that classical back-projection 
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tomography is only suited for imaging bodies which exhibit only small variations from 
uniformity; strong velocity contrasts cause significant deviation of raypaths. Physically, 
this means that high velocity regions within the body are over-sampled, and low velocity 
regions are under-sampled, or even bypassed altogether by the probing seismic energy. A 
final consideration is the fact that the directional resolution of a tomographic image can 
often vary considerably due not only to non-uniform sampling imposed by survey 
parameters, but also due to the internal structure of the body itself. A good example is a 
cross-well survey in which sources and receivers can only be deployed in two boreholes 
bounding the surveyed earth section. Here, the vertical resolution is normally much better 
than the horizontal resolution, simply because there are few raypaths between the two 
boreholes that are steep enough to properly sample the earth laterally. In addition, since 
the velocity variations in the earth are usually greatest in the vertical direction due to 
layering, raypaths tend to align with the layers, further reducing lateral resolution. 

To deal with the complications of tomography caused by non-ideal acquisition 
geometry and by violation of the “weak scattering” criterion (velocity variation of only a 
few percent) by most earth materials, many tomographic imaging techniques have been 
developed, usually involving repeated raytracing and modification of a model. Almost 
universally, however, these methods require input data with a very low level of noise; 
significant mis-picks of the energy arrival times are not well tolerated and at the very 
least manifest themselves as significant artefacts in the image. In some cases, a small 
percentage of significantly erroneous input data values can cause total failure of an 
imaging algorithm, particularly one which uses raytracing, since the raytracing simply 
cannot honour inconsistent transit time values. Because of the vulnerability of 
tomographic imaging to input data errors, the accurate “picking” of the input data is 
crucial for success. 

Picking 
Unlike other types of seismic imaging which use the entire set of wavefield amplitudes 

as recorded on seismic traces, conventional tomographic imaging uses only a single 
discrete time value selected from each seismic trace according to some specified criteria 
involving the trace amplitudes. The selected time value is usually the “arrival time” of a 
particular seismic wave mode, often the “direct arrival”, or the compressional wavefront 
which has traversed the most direct path through the section of earth being probed. In 
simple cases, the direct arrival is also the “first arrival” or the earliest seismic energy to 
appear on a trace, which makes its detection and subsequent picking easier. In many 
cases, however, the desired direct arrival follows the first arrival by a significant delay 
and is considerably harder to detect and to pick accurately. If a tomographic survey 
requires some other arrival (the direct shear mode, for example), none of the desired 
event arrivals will be first arrivals, and all of them will be hard to pick accurately. 

Many algorithms have been developed to automatically pick events on seismic traces, 
but few of them are as accurate or consistent as the eye of an experienced geophysicist 
when picking arrival times for tomographic imaging. Only a geophysicist can reliably 
determine, for example, when a direct arrival is not a first arrival and subsequently find 
and pick the correct event. Nevertheless, even the relatively simple task of manually 
picking first arrivals can be challenging. Because of the variable quality of recording on 
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individual seismic traces, and the different levels of background noise usually present, it 
is notoriously difficult to accurately and consistently locate the actual desired “first 
breaks” of arriving seismic energy on a set of seismic traces. Because of this, on some 
data sets, seismic events are picked on their first troughs, or first peaks. This introduces 
an error on each pick time, but one that is hopefully constant for a given data set. 

The difficulty of picking seismic events is a consequence of the fact that all seismic 
wavefield data are bandlimited and invariably contaminated with noise. If there were 
some way of reducing noise, far more consistent sets of event arrival times could be 
obtained, thus improving the tomographic imaging of such data. What we propose in the 
following is a method wherein the “picking” operation before tomographic imaging is 
replaced by an “interpretation” operation after imaging. We use the averaging within a 
particular tomographic imaging algorithm to reduce the noise intrinsic to the input data. 
The act of picking seismic events on raw data, which is a fundamental interpretation step, 
is replaced by a somewhat different interpretation step following the imaging process. 

PROBABILITY IMAGING 

Statistics and the act of picking 
The act of selecting a transit time for a discrete seismic event, or “picking” the event, 

consists of choosing a single time value from a range of possible values, based on an 
interpretation of the waveform of the event as it appears on a time series seismic trace. 
Whether the process is manual or automatic, various criteria applied to the shape of the 
waveform guide the process to select the most “likely” value for the transit time. Now 
suppose that the arrival time of a seismic event can be represented by a probability 
density function over some interval of possible transit time (Rothman, 1984a, 1984b), 
based on the event bandwidth and waveform, the level of additive noise, and any other 
known sources of uncertainty. In this context, the transit time is considered a random 
variable, and its expected value can thus be expressed using the standard statistical 
formula for the expected value of a discretely distributed random variable, T , 

 ( ) ( ),ii
i

i TpTTE ∑=   (1) 

where ( ) 1=∑
i

ii Tp , and ( )ii Tp , the probability density function,  is the probability that 

the transit time, iT , is the true arrival time. Thus, if we assert that a picked transit time on 
a seismic trace can be represented by an expected value computed from a transit time 
probability density function, we can replace each picked time in subsequent arguments 
with the summation formula for its expected value: 

 ( ) ( ),,,,,,,,, ∑==
i
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where kjT ,  is the j-th transit time pick on the k-th common offset (or common angle) 
gather, kjiT ,,  is a discrete transit time value in some time window (index i) that includes 
all possible transit time values, and ( )kjikji Tp ,,,,  is the probability that any individual time 
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value, kjiT ,, , is the true transit time pick at position j on the k-th common offset gather. 
The probability density function ( )kjikji Tp ,,,,  is normalised for each individual time pick: 

 ( ) 1,,,, =∑ kjikji Tp  (3) 

Figure 1 is a schematic illustration of this concept. In this figure, a seismic event arrival is 
shown, with a low level of noise (or an earlier event) preceding it. If T0 is the actual 
arrival time of the event, the discrete pick (Figure 1b) must align with it to be correct. In 
the presence of noise, or the gradual onset of the seismic event, however, a picking 
algorithm or interpreter might erroneously place the pick at an earlier or later zero 
crossing on the trace. Using a probability density function of arrival times, however, as in 
Figure 1a, allows for all possible picks, thus avoiding early commitment to a possibly 
erroneous pick which could degrade an image.  

 In this setting, a noiseless seismic event of infinite bandwidth would have a density 
function, ( )kjikji Tp ,,,, , consisting of a single unit spike at the exact transit time, and 
computing the expected value from the formula will simply yield the single exact transit 
time. Seismic events with finite bandwidth and/or non-zero additive noise will have 
probability functions whose width reflects the uncertainty of the transit times. Figure 2 
shows schematically the character of probability density functions associated with 
seismic events with various combinations of bandwidth and additive noise levels. The 
“discrete pick” function (Figure 2a) can only be justified by a noiseless event of infinite 
bandwidth, i.e. a “model” event. All other events imply some level of uncertainty and 
hence density functions of some finite width (Figures 2b-2d). 

Back-projection imaging from transit times 
Although other types of tomographic imaging algorithms should be considered in the 

context of probabilistic time picks, we start with the simplest algorithm of all, back-
projection, since it makes our argument more straightforward and intuitive. The basic 
input data for tomographic imaging of any kind are transit time picks kjT , , where the 
indices j, k correspond to the j-th position on the k-th “projection slice” of the input data. 
To relate this terminology to more familiar terms, a “projection slice” in a cross-well 
survey is any trace gather for which the raypaths are parallel (or share a common source-
receiver offset). The index j thus usually identifies midpoint depth, and the index k 
identifies the common source-receiver offset, or, equivalently, the “projection angle” 
between the boreholes in the survey.  

The Radon projection theorem states that an image can be reconstructed from 
“projection slices” by “back-projecting” them over the full range of projection angles. 
For a typical cross-well seismic survey, this means arranging the transit time picks for the 
survey in a 2-D array whose indices are source-receiver midpoint depth and source-
receiver offset. The time picks for each common-offset gather (projection slice) are 
adjusted for moveout corresponding to a single “background” velocity. This step 
effectively equalizes the raypath lengths for the various projections and leaves only the 
local variations about the background velocity which constitute the image information of 
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interest. After correction for moveout, the back-projection proceeds by summing the 
projection slice array along sets of parallel linear trajectories mirroring the various 
projection angles present in the initial survey. Each summation results in a “back-
projection” slice; and these slices, ordered by projection angle, constitute a 2-D array that 
is the reconstructed image. The back-projection process is an algebraic analog of the 
physical “forward projection” process (seismic crosswell survey) that yielded the input 
data. 

A typical back-projected image tends to under-estimate the true image contrasts; so 
the back-projection process is often iterated by forward-projecting the first estimated 
image, subtracting the resulting projection slices from the corresponding projection slices 
of the raw data, repeating the back-projection, and adding the incremental results to the 
first image estimate. This method, known as “iterated back-projection” is quite robust in 
the face of noisy or inconsistent input data. Like all methods which do not trace raypaths 
through the estimated image, iterated back-projection will show systematic errors for 
surveys in which the imaged properties vary from the background by more than a few 
percent; but, on the other hand, it cannot go wildly astray due to untraceable raypaths. For 
our purposes, we choose simple non-iterated back-projection. The l-th time value of the 
m-th back-projection slice, mlT ,′ , is computed from the input projection slice data, kjT ,  as 
follows: 

 ∑
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whereδ is the incremental crosswell source-receiver offset between successive back-
projection slices and h is the number of projection slices in the input data set. 

Interchanging picking and projection 
As discussed earlier, the most difficult part of tomographic imaging is usually 

obtaining a set of input transit times that is both consistent and error-free. It is highly 
desirable to find a way to obtain more robust input values for the imaging process. In 
processing seismic data, we often use data redundancy to allow us to average noisy input 
data and thus improve results. The time picks included under the summation in equation 
(4) are usually considered to be the raw transit times picked on single traces, either 
manually, or by use of some type of threshold-based algorithm, and are affected by all the 
usual problems, including significant mis-picking. Consider what happens, however, if 
we replace these explicitly picked times with their expected values as defined by equation 
(2) above: 
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where i, a time index, is summed over a discrete window interval of n values, within 
which the pick time is assumed to occur (this means that each sum over n transit time 
probabilities is unity). The choice of window length is the only subjective interpretive act 
in this process. Note that by expanding the back-projection formula in this fashion, we 
have added an extra dimension (time) to the computation, so that we are now dealing 
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with a 3-D volume of (unpicked) transit times and their corresponding probability 
densities as the input data set for tomographic imaging.  

There is nothing in equation (5) that dictates the order in which we carry out the 
double summation, so we interchange the order as follows: 
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Now, since i is the index of transit times within a fixed window, kjiT ,, values are all equal 

for a given i , so we can simply call the common value iT and carry it outside the inner 
summation: 
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Now the inner summation describes just the back-projection of an array of probability 
densities, which will result in another array of probability densities which we shall 
call ( )mlii Tp ,, . Substituting into equation (7), we get 
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which is in the form of an expected value. Hence, the substitution of the expected value 
expansion for each raw transit time pick has led to an expression for an “expected value” 
transit time image. By deferring the initial and often unreliable task of picking transit 
times and instead describing raw transit times with probability functions, we perform the 
imaging step using probabilities only and perform the interpretation or “picking” of the 
image only as the final step of evaluating the expected value of the transit time for each 
location, l,m in the image grid.  

Probability functions 
In the preceding section, we showed how to avoid picking transit times on raw data 

traces by assigning a probability density function to the range of possible transit times for 
each input trace and imaging the probabilities, relegating the interpretation/picking step 
to the end of the process in order to benefit from the smoothing inherent in the imaging 
process. While equation (9) expresses one way to obtain a final image (expected value 
computation), it is by no means the only possibility. Another perfectly valid method for 
extracting an interval transit time image from the back-projected 3-D probability array is 
to select the transit time corresponding to the maximum of each image probability density 
function. Other possibilities include choosing the transit time corresponding to the 
median value of each probability density function, or the transit time position of the mode 
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of the probability density function. Which method is chosen will depend on the 
credibility of the probability density functions we choose to characterize the input transit 
times. In an earlier section we assumed without much discussion that a probability 
function could somehow be found to describe an uncertain transit time pick on a seismic 
trace. In fact, the success or failure of probabilistic imaging depends crucially upon this 
choice of probability density function and whether the function can be reliably created for 
each trace in a data set.  

In a companion chapter (Henley, 2004), we demonstrate using the cross-correlation 
function on input seismic traces to help construct probability density functions for 
relative delay times of reflection events. The current paper, however, focuses specifically 
upon tomographic imaging from direct arrival events. These events are typically 
asymmetric in time, with the desired transit time lying distinctly to the early side of the 
event waveform. Furthermore, the event waveform, amplitude, and bandwidth often vary 
considerably from trace to trace, making it difficult to correlate consistently enough to 
create good probability density functions. One approach which has been tried with 
limited success is to compute various ad hoc envelope functions for each trace in order to 
remove some of the ambiguity of the direct arrival event. Empirical experience has 
shown that an envelope function which embodies both seismic event energy and 
frequency content can be consistent enough from trace to trace on a crosswell survey to 
yield useable probability functions. In the case of an envelope function, however, since 
time averaging of the input signal occurs, the resulting probability function resembles a 
probability distribution function or cumulative distribution more than an actual 
probability density function. This is not necessarily a problem, since cumulative 
probability functions can be imaged just as well as regular probabilities and have the 
added advantage that the intrinsic summation will further reduce noise. The only 
difference is in how we interpret a cumulative probability function. Instead of the 
function value being the probability that its corresponding transit time is the actual transit 
time of the seismic event, the cumulative probability value is the probability that the 
seismic event has a transit time less than or equal to the given transit time (see Figure 3). 
This suggests another way to perform an interpretation of the 3-D probability space 
resulting from the back-projection step. We can select from each trace the transit time 
corresponding to the same constant value of cumulative probability (for instance, 0.5). 
The choice of 0.5 would be equivalent to selecting the mode of the unsmoothed 
probability functions. One advantage of imaging with cumulative distribution functions 
rather than probability density functions is that any probability value can be chosen to 
select an image surface. The images for various probabilities can be compared to 
determine which seems most consistent, or even averaged (similar to computing the 
expected value). 

A SUGGESTIVE EXAMPLE 
We have not yet implemented a software procedure at CREWES for probability 

imaging; but Figure 4 shows a crosswell image created for Shell Canada using a method 
similar to that described above. For these data, an envelope function was constructed, 
which, when computed for each trace, yielded time series which bore a strong 
resemblance to cumulative probability distribution functions. The envelope functions for 
the entire data set, sorted as projection slices, were back-projected to create a 3-D 



Henley 

8 CREWES Research Report — Volume 16 (2004)  

cumulative probability space with coordinates of well depth, well-to-well distance, and 
transit time (actually interval transit time). Then a commercial rendering program was 
used to find and render a surface through all points of constant probability. In this image, 
the distance from the front plane to the rendered surface represents the interval transit 
time of the particular parcel of earth corresponding to the local coordinates. Though not 
shown, the sonic logs from the two wells involved in the survey correspond reasonably 
well to the transit times shown along both the right and left edges of the tomogram 
surface. The prominent diagonal feature is an artifact likely caused by a systematic error 
in receiver depth in one of the wells. Any number of similar tomograms can be created 
from the probability volume simply by choosing a different probability value for 
selecting the transit times to render. 

The real potential of this method was suggested by another experiment with this same 
data set, which is not shown here. The presence of strong shear wave arrivals in the data 
set was noted early in its analysis; but the arrivals weren’t clean enough to pick 
consistently, either manually or automatically. Fortuitously, however, it was possible to 
construct envelope functions which were consistent enough to image. Once again, the 
image was interpreted by rendering the transit time values at a specific value of 
cumulative probability. The image, while not as complete or consistent as that in Figure 
4, was the only one which could be constructed for the transmitted shear waves in this 
cross-well survey. 

EXTENSIONS 

We have shown a suggestive example using probability as an imaging tool and 
justified it with some mathematics which pertain, strictly speaking, only to the back-
projection method of tomographic reconstruction. Is the method more generally 
applicable than this? Can it be used, for example, when techniques other than back-
projection are used for imaging? What functions are best for simulating probability 
functions or cumulative probability functions? What are the best methods for extracting a 
tomogram from an image volume? These and other questions remain to be investigated. 

CONCLUSIONS 
Tomographic imaging methods are sensitive to inaccurate input values, but it is 

notoriously difficult to obtain accurate transit time picks on seismic traces. One partial 
solution to this dilemma is to use probability density functions as the picks, generated 
from the data themselves, and to form an image space from these functions. The resulting 
image volume can be “interpreted” by one of a number of statistical methods, each aimed 
at extracting a surface from the image space. A statistical justification has been presented 
to support the method, and proof-of-principle demonstrated with a crosswell tomographic 
image created by a rudimentary form of the method. 
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FIG. 1. Instead of associating a single discrete time pick (b), possibly erroneous, with the first 
break of a seismic event arrival, a distribution of picks (a), including all credible arrival times, can 
be used to represent the arrival. 
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FIG. 2. Pick probability distributions associated with seismic events of varying bandwidth and 
noise level 
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FIG. 3. The relation between a pick probability distribution (density) function (a) and a pick 
cumulative probability function (b).The latter is more useful for tomographic imaging and is just 
the integral (running sum) of the former. 
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FIG. 4. A probability crosswell interval transit time tomogram. A surface of constant probability 
has been rendered from a transit time probability volume. (Image courtesy of Shell Canada Ltd.) 


