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Data preparation for prestack depth migration 

Hugh D. Geiger 

SUMMARY 
The goal of prestack depth migration is to reconstruct an image of the subsurface with 

the highest possible resolution. Given that seismic data is bandlimited, the ideal response 
from the complete sequence of data preprocessing and imaging is an image where each 
reflector is represented as zero-phase bandlimited singular functions with the peak 
positioned at the reflector and the peak amplitude proportional to the angle-dependant 
reflection coefficient. To achieve this goal, each step of the sequence needs to be 
understood and implemented correctly. This is a challenge even with the simplest 
constant-velocity synthetic data. Key considerations include: 1) preprocessing of the data 
to a zero phase wavelet, 2) accurate modelling of the source signature as a zero-phase 
wavelet, and 3) phase and amplitude stability of the extrapolators. 2-D synthetic models 
are used to show how uncorrected static shifts and non-zero-phase wavelets affect the 
resolution of the image. 

INTRODUCTION 
The three most common imaging conditions for multidimensional prestack seismic 

imaging are based on the principles of excitation time, cross-correlation, and 
deconvolution (Claerbout, 1971). These imaging conditions are applied in the time-
domain to either a single extrapolated trace or a pair of extrapolated traces, yielding a 
value representing bandlimited reflectivity at the extrapolation depth. The 1-D 
deconvolution imaging condition can be shown to be an essential part of the formulation 
of relative-amplitude-preserving Kirchhoff and diffraction stack migration methods 
(Docherty 1991; Hanitszch 1997; Dellinger et al. 2000, Bleistein et al. 2001), and suitable 
for relative-amplitude-preserving prestack wave-equation shot-profile migration (de 
Bruin et al. 1990). The 1D excitation imaging condition is commonly used in reverse-
time migration (Zhu and Lines 1998), and can be shown to be approximately correct for 
both relative-amplitude-preserving diffraction stack and wave-equation shot-profile 
migrations when the shot records have been preprocessed with gain correction (Al-Saleh 
and Geiger, 2004 – this report). Recently, a variety of multidimensional imaging 
conditions have been proposed, either for improved spatial resolution (Valenciano and 
Biondi, 2003), or for the extraction of amplitude-versus-angle response using wave-
equation survey-sinking migration (e.g. Kuehl and Sacchi 2003; Sava and Fomel 2003). 
For all these methods, basic concepts of optimal 1-D resolution of wavelets in the time 
domain can be extended to resolution in the depth image. 

 In the depth image, Bleistein et al. (2001) choose a bandlimited singular function to 
quantify the ideal reflector, and then design their Kirchhoff-Born inversion schemes to 
image these functions. Along any line normal to the reflector, a bandlimited singular 
function can be thought of as a bandlimited delta function, although for practical 
purposes, any bandlimited zero-phase wavelet will suffice. I will use a Ricker wavelet 
(Ricker 1953). These are appropriate functions because they are spatially compact (i.e. 
they have a limited extent normal to the reflector,) and because their peak amplitude is 
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centered on the discontinuity in elastic properties represented by the reflector. Thus, 
many of the concepts of 1D resolution formulated for seismic time sections (see Brown 
1999; Yilmaz 2001) can be applied to depth sections. In this study, I look at two 
important characteristics of bandlimited zero-phase wavelets - dominant frequency and 
bandwidth – and investigate wavelets as they pass through the filters defined by 1-D 
imaging conditions. In addition, I use the 2-D Marmousi acoustic data set (Versteeg and 
Grau 1991) to examine source modelling, and to illustrate effects of phase rotation and 
static shifts on the accuracy of reflector imaging. 

WAVELET PROPERTIES FOR 1D RESOLUTION 
For 1-D resolution, the zero-phase wavelet has two important properties: dominant 

frequency and bandwidth (Brown, 1999). The ominant frequency is related to peak-width 
resolution. The width of the wavelet peak from zero-crossing to zero-crossing can be 
defined approximately equal to T/2 or 1/(2*fdom), where T is the period of fdom - the 
dominant frequency of the wavelet - and fdom is approximately equal to the median 
frequency. 

The bandwidth of the zero-phase wavelet is related to peak-height resolution. The ratio 
of trough-height to peak-height is approximately equal to 1/B, where B is the bandwidth 
in octaves. A wavelet with a larger bandwidth will have correspondingly smaller 
sidelobes. However, large bandwidth does not necessarily yield a compact wavelet. 
Yilmaz (2001) points out that steep slopes in the wavelet’s amplitude spectrum can result 
in a wavelet with a ringy appearance. 

The two zero-phase wavelet properties of dominant frequency and bandwidth are 
important in the design of imaging conditions. Ideally, we would like our output depth 
section to have the depth-equivalent properties of high dominant frequency and large 
bandwidth. A bandlimited singular function with small peak width is important for 
defining reflector structure and resolving thin beds, while small sidelobes help reduce the 
interference between nearby reflectors. Limited interferernce is important, given that 
most relative-amplitude preserving migrations extract peak amplitude as a measure of 
reflectivity. High dominant frequency and large bandwidth are also desirable properties 
for a modeled source wavelet, and as an appropriate goal for the embedded wavelet after 
preprocessing of the shot record. Care must be exercised, however, because both the 
cross-correlation and deconvolution imaging conditions combine the source and 
embedded wavelets, with the potential for producing a less desirable imaging wavelet.  

In Figure 1, the dominant frequency is progressively increased from 15-20-25-30 Hz, 
while the bandwidth is kept relatively constant at 2-2.2 octaves. Notice how the peak 
width of the Ricker wavelet narrows, but the ratio of the trough height to peak height 
remains relatively constant. In Figure 2, the dominant frequency of the wavelets in Figure 
1 has been doubled to 30-40-50-69 Hz, while keeping the bandwidth relatively constant 
at 2-2.2 octaves. This has effectively doubled the peak width resolution, with no change 
in the ratio of peak trough to peak height. In Figure 3, the 30 Hz Ricker wavelet from 
Figures 1 and 2 has been whitened using a trapezoidal filter in the frequency domain to 
yield a  [1 3 48 62.5]  Hz amplitude spectrum.  The dominant  frequency is approximately 
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(a)     (b) 

FIG. 1. Four Ricker wavelets with a different dominant frequency fdom = 15, 20, 25, 30 Hz but 
similar bandwidth B = 2-2.2 octaves. Notice how the peak width [~ T/2 or ~1/(2*fdom)] decreases 
with increasing fdom, but the ratio of the peak trough to peak height ( ~1/B) remains constant. 

 

(a)     (b) 

FIG. 2. Four Ricker wavelets with a different dominant frequency fdom = 30,40,50,60 Hz but 
similar bandwidth B = 2-2.2 octaves. Compared to Figure 1, the peak width resolution has 
effectively doubled by doubling the dominant frequency, with no increase in bandwidth. The ratio 
of the peak trough to peak height remains relatively constant. 

 

(a)     (b) 

FIG. 3. A 30 Hz Ricker wavelet whitened to [2 6 48 62.5] Hz. After whitening, the dominant 
frequency is the same as the 30 Hz wavelets in Figures 1 and 2..The effective bandwidth has 
been increased by half from ~2-2.2 to ~3.7 octaves, which reduce the peak trough to peak height 
ratio by a 1/3. 
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the same, so there is no change in peak width. The bandwidth has increased by one-half 
from  approximately 2-2.2 to 3.5, yielding a one-third reduction in peak trough to peak 
height ratio. A wavelet similar to Figure 3 is a reasonable goal for whitening, and a 
desirable singular function in the space domain of the image.  

Notice that the wavelet in Figure 3 is no longer compact. The steeper slopes in the 
amplitude spectrum produce some ringing. In this case, the frequency boosting at the low 
end would be almost impossible to achieve in practice, but some additional shaping might 
be possible at the high end. With most conventional seismic data, bandwidths of between 
2.5-3.5 octaves are achievable given favorable acquisition conditions and good pre-
processing (Brown 1999). 

IMAGING CONDITIONS 
Assume that, with favourable acquisition and processing, we obtain a wavelet within 

the range of those displayed in Figures 1-3. In addition, assume that, if required, we are 
able to model the forward propagating shot impulse as a propogating zero-phase wavelet 
with a spectrum similar to those displayed in Figures 1-3. What kind of image will we get 
out if we apply one of the three basic imaging conditions: excitation time, cross-
correlation, or deconvolution? 

The excitation time imaging condition is the easiest to analyze. In fact, in the ideal 
case, it can be predicted as a velocity-stretched copy of the embedded wavelet contained 
in the backward extrapolated shot-record. 

The cross-correlation imaging condition will combine the modeled source and 
embedded shot-record wavelets. Given the Fourier transform ( ), ;G sU ωx x  of a trace in 
the backward-extrapolated upward-travelling shot-record wavefield U at depth point xG 
for the source at xs, and the Fourier transform ( ), ;G sD ωx x  of a trace in the forward-
extrapolated downward-travelling modeled shot wavefield D at the same depth point xG 
and for the same source xs, the reflectivity ( ; )G sR x x  is the zero lag of the cross-
correlation imaging condition given by 

 ( ) ( )( )( ; ) Re , ; , ;G s G s G sR U D
ω

ω ω∗=∑x x x x x x . (1) 

An additional summation can be made over shot images at xs to create a stacked image.  

The deconvolution imaging condition also combines the modeled source and 
embedded shot-record wavelets. Using the same variables as in Equation (1), the 
deconvolution imaging condition can be thought of as the zero-lag of a normalized cross-
correlation with stabilization factor ( )2 ,G sε x x : 
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Valenciano and Biondi (2003) suggest that the best choice for ( )2 ,G sε x x  depends on 
the spatial location of both the image point and the source. They propose that a 
reasonable estimate for ( )2 ,G sε x x  can be determined as a scaled mean (over frequency) 
of the downward propagating shot trace: 

 ( ) ( ) ( )2 , , ; , ;G s G s G sD Dε λ ω ω∗=x x x x x x . (3) 

Kelly and Ren (2003) also suggest a spatially variable stabilization factor. They 
present both iterative and least squares approaches as modifications to the method of 
Valenciano and Biondi (2003), and conclude that both methods can produce excellent 
images - far superior to methods using an arbitrary constant or ‘guesstimate’ value 
for ( )2 ,G sε x x . I am currently developing a spatial- and shot-variable stabilization factor 
with thresholding that tapers and removes portions of the image poorly illuminated by the 
shot. The Marmousi image shown in Figure 12 is produced using this method. More 
details are forthcoming. 

SOURCE MODELLING 
The wavelet in the modeled shot can be designed to yield a zero-phase propagating 

wavelet with the peak amplitude marking the time elapsed since source initiation. 
However, directional variations can arise both from the source array and from ghost 
effects. As well, the unknown true propagating source wavelet will experience phase and 
amplitude variations due to the Earth filter (for example, attenuation and thin-bed 
multiples – similar variations are present in most finite difference synthetic data). These 
wavelet variations are not properly accounted for when using one-way scalar wavefield 
extrapolators, so there is no guarantee that the source wavelet will arrive at the reflector 
location as an optimal zero-phase wavelet. 

One-way scalar wavefield extrapolators introduce another issue worth addressing. It is 
well known that the wavefield from an input monopole source function propagates as a 
dipole response (Wapenaar 1998). The exact response function depends on the 
dimensionality of the extrapolator (2-D, 2.5-D, or 3-D). A simple way around this 
problem is to seed the source function at a desired depth (e.g. 25 m for Marmousi) using 
analytic Green’s functions. One advantage of this approach is that source arrays and 
ghosted sources can be easily modeled, even if the spacing within the array does not 
match the grid spacing chosen for wavefield extrapolation. Simple constant velocity 
Green’s functions can be used in marine or land situations where the near surface velocity 
is constant. Kelly and Ren (2003) propose a clever extension to this method for 
modelling land sources in areas of complex velocity structure. A constant velocity 
appropriate for the immediate region around the source array is used to fill the half-space 
below the source. The source array and any ghosting effects are modeled at shallow depth 
using constant-velocity analytic Green’s functions. The analytic wavefield is then 
backward extrapolated to the surface. The resulting wavefield should be localized in the 
vicinity of the original source and can now be used as input for extrapolation through a 
model of any complexity, including models with strong near-surface lateral and vertical 
velocity variations typically encountered in land surveys. 
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Modelling an accurate source wavelet with correct relative amplitude is essential for 
relative-amplitude preserving migration (Dellinger et al. 2000; Kelly and Ren 2003). An 
example of a modeled source wavelet for the 2-D Marmousi synthetic data set is shown 
in Figure 4. The source array was modeled using analytic 2-D Green’s functions 
representing 6 water guns at 8m spacing and a depth of 8m, and 6 ghosts as mirror 
sources of opposite sign. The wavelet has been rotated to zero phase, which corrects for 
the half-integral filter of the 2-D Green’s function and the full derivative filter of the 
dipole effect of the ghost (see e.g. Geiger 2001; Deregowski and Brown 1983). The 
source array, combined with the dipole of the ghost, creates a directed array where higher 
angles of propagation are significantly attenuated. The wavelet after whitening is shown 
in Figure 5. The whitening parameters produce only a moderate amount of ringing. 

 

(a)     (b) 

FIG. 4. a) Marmousi source impulse modeled at 24m depth. b) Amplitude spectrum of the source 
with a dominant frequency fdom = 25 Hz, and bandwidth B ~ 2 octaves. The source array was 
modeled using analytic 2-D Green’s functions representing 6 water guns at 8m spacing at a depth 
of 8m, and 6 ghosts as mirror sources of opposite sign. The wavelet has been rotated to zero 
phase, correcting for the half-integral filter of the 2-D Green’s function and the full derivative filter 
of the dipole effect of the ghost. 

 

(a) (b) 

FIG. 5. a) Marmousi source impulse from Figure 4 after whitening to [4 8 55 80]. b) Amplitude 
spectrum with fdom = 25 Hz and bandwidth B ~ 3 octaves. 
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The original Marmousi shot records were produced using a relatively coarse 4m finite 
difference grid. This created some high frequency dispersion noise that was removed by a 
[0, 10, 35, 55] bandpass filter at the time the data were generated (Verstee and Grau 
1991). The applied filter effectively limits the amount of whitening that can be applied to 
either the low end or the high end. The dispersion effects will be most pronounced at 
long-range low-velocity propagation, where they will appear (to first order) as a 
significant static shift or phase rotation of the wavelet. However, these wavelets will be 
recorded along with wavelets from deeper reflectors where the propagation path is 
predominantly at a much higher velocity and dispersion is minimal. This problem might 
best be tackled by regenerating the Marmousi dataset using more advanced finite 
difference techniques. 

STATIC SHIFTS AND PHASE ROTATION 
A good depth image contains well-focused reflectors that are accurately positioned in 

space. Focusing and positioning are compromised if either the modeled shot or the shot 
record contain uncorrected static shifts or phase rotations relative to the other. A simple 
explanation is as follows. The central peak of the bandlimited reflector image is created 
when the wavelet in the forward extrapolated source record and the reflection event in the 
backward extrapolated shot-record are time coincident. With an uncorrected relative 
static shift between the two, time coincidence will occur at a different extrapolation depth 
(and different lateral position for wavefields propagating non-vertically). In this case, 
both wavefields will be either under- or over-extrapolated, and the resulting image will 
not be optimally focused. Uncorrected relative phase rotations will produce similar 
effects but of smaller magnitude. Note that the extrapolation operators are independent of 
time. Hence, if both wavefields have identical static shifts or phase rotations, an image 
with good focusing and accurate positioning can still be obtained. 

Phase rotations and static shifts in shot records are difficult to identify because we 
don’t know the shape of the embedded wavelet. In all likelihood, the embedded wavelet 
is mixed phase. A deconvolution operator that creates a zero-phase wavelet will probably 
introduce (or leave as uncorrected) some unknown component of static shift. In addition, 
a zero-phase embedded wavelet may not be the ideal response. Thus, the problem can 
persist even after what might be considered ideal processing. 

 A simple acoustic finite-difference model can be used to determine approximate static 
shifts and phase rotations suitable for correcting shot records. The finite-difference model 
is designed to isolate the wavefield response from a single subsurface reflector, while 
incorporating some of the key near-surface effects such as arrays, ghosting, and velocity 
contrasts that might generate short period multiples (e.g. shallow water bottom 
multiples). The input source wavelet and both the source and receiver arrays should 
match the actual acquisition parameters as closely as possible. If the data are synthetic (as 
is the case with Marmousi), the test program should duplicate key parameters such as 
grid spacing and the order of the finite difference operators. The resulting finite 
difference traces can then be used to test and compare pre-processing options such as 
deconvolution and whitening. The goal is to create a zero-phase wavelet with dominant 
frequency and bandwidth characteristics as described earlier in this paper (e.g. Figure 3). 
An appropriate static shift can be determined by comparing the observed traveltime at the 
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peak of the processed zero-phase wavelet against an exact traveltime of the reflection 
event computed analytically or by raytracing. We used this approach to model the near 
surface effects of the Marmousi model (Geiger and Daley 2003). A good zero-phase 
wavelet was produced using a simple predictive decon (200ms operator length, 52 ms 
gap, and .0002 stability factor), combined with zero-phase whitening and a –60ms static 
shift. This processing was applied to the Marmousi shot records prior to imaging. Note 
that the parameters chosen for the predictive decon are quite gentle. Youn and Zhou 
(2001) propose a mute function combined with a more aggressive predictive decon 
(160ms operator, 12 ms gap, stability factor unknown). It is quite possible that a better 
image might be created given more testing of processing parameters. 

The Marmousi data set is ideal for illustrating the effect of an uncorrected static shift 
in the shot record. Figure 6 is the Marmousi velocity model, with a red box highlighting 
the area imaged in Figures 7-10. Figure 7 is the bandlimited reflectivity, with a black 
sawtooth line marking the position of a reference reflector for Figures 8-10. 

 FIG. 6. Marmousi velocity model. The area outlined in red is imaged in Figures 7-12. 

 

FIG. 7. Marmousi bandlimited reflectivity. The black sawtooth line marks a reference reflector for 
Figures 8-10. 
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FIG. 8. Marmousi data; gap decon; whitened; 0ms static; PSPI cross-correlation imaging. 

 

FIG. 9. Marmousi data; gap decon; whitened; -32ms static; PSPI cross-correlation imaging. 
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FIG. 10. Marmousi data; gap decon; whitened; -60 ms static; PSPI cross-correlation imaging.  

The images in Figures 8-10 are processed and migrated using identical parameters, 
with the exception of the static shift applied to the input data after predictive 
deconvolution and whitening, but prior to migration. Figure 8 is the image from the data 
with no static applied; Figure 9 with a –32ms static (data advanced in time), and Figure 
10 with a –60 ms static. The -60ms static is the static suggested by the finite difference 
modelling and processing exercise described earlier, and appears to be very close to 
optimal. Each of the images was produced by an unweighted stack of depth images from 
87 shot records migrated using phase-shift plus interpolation (PSPI, Gazdag and , with 
source locations every 25 m from 4000 m to 6175 m in x. The individual depth images 
were created using a simple cross-correlation imaging condition (equation 1). The data 
were not muted prior to stacking. 

The image in Figure 7, with no static applied, could be considered as a standard result 
for Marmousi imaging. The sharp synclinal notch at approximately 5100 m in x and 500 
m in depth  is imaged  as a broad synform,  a feature  that is  quite common in the 
published 

 

FIG. 11: Marmousi data; gap decon; whitened; -56 ms static; PSPI cross-correlation imaging. 
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FIG. 12. Marmousi data; gap decon; whitened; -60ms static; Kirkpavg deconvolution imaging. 

results (e.g. Shin et al. 2003, Kuehl and Sacchi 2003). In general, however, individual 
reflectors in the image are reasonably well focused, although there is significant 
mispositioning of both the left dipping reflectors and right dipping faults. For real data, 
the problem of uncorrected static shifts will probably become confused with velocity 
analysis. Further research is required on this subject. 

The image in Figure 11 is produced using a static of –56 ms. The reference black 
sawtooth line is not plotted, as it exactly overlays the position of the strong red reflector. 
The image in Figure 12 is produced using a Kirchhoff average slowness extrapolator, a    
-60ms static, and a threshholding deconvolution imaging condition. The image is 
displaced downward 8 m to position the image reflectors at the spatial location of model 
reflectors. Some features of the deconvolution imaging condition image are superior to 
the ‘optimal’ image in Figure 11. Reflectors tend to be more continuous, although the 
deeper set of strong dipping reflectors between 5600 m and 6000 m in x appear to be less 
well resolved. More testing of the imaging conditions is required. 

CONCLUSIONS 
Prestack depth migration requires careful data preparation. This is true even for 

synthetic data sets such as the classic Marmousi acoustic data set. Ideally, the data should 
be preprocessed so that the embedded wavelet is zero-phase. A high dominant frequency 
and large bandwidth will produce a desirable zero-phase wavelet with a narrow peak 
width and small trough-height to peak-height ratio. Care is required when modelling the 
forward propagating source so as to produce a propagating zero-phase wavelet that has 
similar desirable characteristics. In general, a wavelet signature input as a single spatial 
impulse will not produce satisfactory results. Additional care is required when modelling 
the effect of source arrays and ghosting. I recommended use of the established method of 
seeding the source wavefield at a shallow depth using analytic constant-velocity Green’s 
functions. 

Even with optimal wavelet shaping, residual static shifts and phase rotations may 
remain, most likely in the processed data. A series of images produced using a subset of 
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the Marmousi data show that uncorrected static shifts result in positioning errors and, to a 
lesser extent, suboptimal focusing. If possible, the static shifts should be removed. For 
the Marmousi data set, a static shift and phase rotation were estimated using a simple 
finite difference model of an isolated reflector that included all the near-surface effects in 
the original Marmousi model. For real data, uncorrected static shifts will probably 
become confused with the velocity estimation. The choice of imaging conditions can also 
have a significant effect on the quality of the image. However, the results presented in 
this study at this point are inconclusive. Adaptive imaging conditions are a current 
research topic. 
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