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The FOCI method versus other wavefield extrapolation methods 

Saleh M. Al-Saleh, Gary F. Margrave, and Hugh D. Geiger 

ABSTRACT 
Recursive wavefield extrapolation methods are more powerful than ray theory based 

methods because of their great ability to handle strong lateral velocity variations. There 
are different methods to calculate frequency-space convolution operators for wavefield 
extrapolation. Wavefield extrapolation methods have two major problems (1) the 
extrapolator instability and (2) they are computationally expensive.  

The forward operator and conjugate inverse (FOCI) method is an appropriate method 
for designing accurate and efficient extrapolation operators that remain stable in a 
recursive algorithm. The FOCI’s results are comparable with other results obtained with 
other known methods such as Hale’s and the weighted least square (WLSQ) extrapolation 
methods. Further, the FOCI method is computationally more efficient than the other 
methods. 

The amplitude and phase spectra of the FOCI’s, Hale’s, and WLSQ’s extrapolators are 
shown to compare their stabilities and accuracies. The impulse responses of these 
extrapolators are also shown to further compare their accuracies. The Marmousi dataset is 
used to illustrate the quality of the three extrapolators in a prestack depth migration in the 
presence of strong lateral velocity variations and steeply dipping events. 

INTRODUCTION 
Recursive wavefield extrapolation methods in the space-frequency domain are 

becoming increasingly popular because of their great ability to handle strong lateral 
velocity variations.  However, these methods have two major problems (1) they are 
computationally more expensive than other methods such as the Kirchhoff methods and 
(2) the extrapolators are often unstable. Unstable spatial convolution operators mean that 
the wavefield is amplified at each depth step. Despite their computational cost, images 
obtained by recursive wave field extrapolation methods are often superior to those 
obtained from ray theory based methods.  

There are different ways to design spatial convolution operators for recursive 
wavefield extrapolation. The most common approach is to design an operator that 
approximates the exact phase-shift operator in the frequency-wavenumber domain then 
transform it to the spatial domain. Some methods use nonlinear least-square algorithms to 
design the extrapolator like Holberg (1988) for 2-D media and Blacquiere (1989) for 3-D 
media. However, these methods are expensive and sometimes yield unstable 
extrapolators. Other methods smooth the phase of the phase-shift operator in the 
frequency-wavenumber domain then transform it to the spatial domain (Blacquiere, 
1989). However, the spatial operator has to be relatively long to be stable, which reduces 
the efficiencies of these methods. 

Hale (1991) introduced a method to calculate a stable explicit extrapolator. This 
method is based on the Taylor expansion of the exact phase-shift operator in the 
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frequency-wavenumber domain and the use of basis functions. Hale’s method can design 
short stable operators but can not handle high angles of propagation. Further, it is 
computationally expensive and requires the use of both symbolic and numerical 
mathematical software packages. Thorbecke et al. (2004) have introduced a weighted 
least-squares method (WLSQ), which is not perfectly stable but has a controlled 
instability. The problem with the WLSQ method is that it is not stable for short operators 
and coarse sampling. 

Margrave et al. (2004) introduced a new method for designing spatial operators called 
the FOCI method. “FOCI” is an acronym for forward operator and conjugate inverse, 
which suggests the key concept in operator stabilization by Wiener filtering. However, 
there are three key innovations in the method with the other two being: (2) the use of dual 
operator tables to reduce evanescent filtering, and (3) spatial resampling of the lower 
frequencies to increase operator accuracy and decrease run times. 

In this paper, comparisons of the FOCI method with other extrapolation methods are 
shown. The other methods are Hale’s and WLSQ’s methods. The objective of these 
comparisons is to investigate the stability, accuracy, ability to handle high angles of 
propagation, and efficiency of the FOCI method versus other industry standard methods. 
A brief review of theory of each method is shown to have some insight into these 
methods. The prestack depth migrations of the Marmousi dataset using these 
extrapolators will be shown to compare these extrapolators in the presence of strong 
lateral velocity variations and steeply dipping events. 

THEORY OF HALE’S EXTRAPOLATOR 
To derive Hale’s extrapolator, we start with the 2-D scalar isotropic wave equation 
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Equation 2 is just a 1D Helmholtz equation whose solution, for upgoing or downgoing 
waves, is 

 ( ) ( ), , , 0, .zik z
x xk z k z eψ ω ψ ω= =  (4) 

Note that ψ  is the wavefield representing pressure, ψ  represents its 2-D Fourier 
transform, t is the two-way travel time, and x and z are the spatial and depth coordinates.  
So, the wavefield at some depth z, ( ), ,xk zψ ω , can be obtained by multiplying the 
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recoded wavefield at the surface, ( ), 0,xk zψ ω= , by a phase shift operator, zik ze , in a 
homogeneous medium. Let’s denote the exact phase-shift operator by 

 ( ) ,zik zD k e ∆=  (5) 

where  
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and 

 .xk xk= ∆  (7) 

We can rewrite Equation 5 as 

 ( )D k =  
1/ 22
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Note that the quantities /x vω∆ and k have been normalized. The normalization of 
xz ∆∆ / and vx /∆ω , uniquely determine the exact phase-shift operator, ( )D k . The exact-

phase operator ( )D k is the same term applied in the phase-shift migration and can only 
handle velocity varying with depth (Gazdag, 1978). For a general inhomogeneous 
medium with significant lateral velocity variations, downward continuation can be 
carried out conveniently in the x−ω domain as a −x dependant convolution (Holberg, 
1988).  

The symmetry of the exact-phase, ( )D k , with respect to k implies that the complex 
extrapolation filter coefficients, nw (the actual extrapolator in the x−ω  domain), should 
be even. Specifically, we expect: n nw w− = . Therefore, the number of coefficients N 
should be odd, with the coefficient index n bounded by ( ) ( ) 2/12/1 −≤≤−− NnN . Due 
to the symmetry of nw , the filter can be specified by (N+1)/2 complex coefficients, where 
N denotes the number of complex coefficients needed to define the operator. The Fourier 
transform of the operator is defined by 
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Because of the symmetry of nw , 
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where 0nδ is the Kronecker delta function defined by 
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In Hale’s method, the coefficients of the filter are represented as a sum of M weighted 
basis functions: 
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where Hale’s choice for the basis functions is 
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In Hale’s method, instead of determining ( ) 2/1+N complex filter coefficients, only M 
complex weights mc are determined. To ensure stability, the number, M, of weights must 
be less than the number ( ) 2/1+N complex filter coefficients. Therefore, only the first M 
even derivatives of the exact phase and the actual Fourier transforms are matched and 
using the remaining ( 1) / 2N M+ − degrees of freedom to ensure stability. To 
determine, mc , we begin with Fourier transform of the extrapolation filter 
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are the Fourier transformed basis functions. By matching the thl even derivative at 0=k , 
we obtain the linear equation: 
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which is a system of linear equations that can be solved to determine mc . Then mc  is used 

in Equation 14 to obtain ( )
~

W k , which can be transformed to nw by applying an inverse 
Fourier transform.  
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THEORY OF WLSQ’S EXTRAPOLATOR 
A brief review of the weighted least square (WLSQ) approach to design explicit 

extrapolation operators is shown (Thorbecke et al, 2004). The spatial Fourier transform of 
the convolution operator, ( ), ,W x zω ∆ , can be written as  

 ( ) ( ) ( )
2

1

, , exp , ,
x

x x
x

W k z ik x W x z dxω ω∆ = ∆∫  (17) 

for ,1 ,2x x xk k k≤ ≤  . The discrete representation of Equation 17 can be written as 

 ( ) ( ) ( )exp
m M
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for .N n N− ≤ ≤  The discrete spatial Fourier transform of ( ), ,W x zω ∆ can be also 
represented in matrix notation such as 

 ,w w= Γ  (19) 

where w represents the short operator and w  is its spatial Fourier transform, which gives 
an approximation to the exact phase-shift operator. Further, m and n represent the 
samples of the short operator and its Fourier transform, respectively.  Equation 19 has 
more equations than unknowns and to solve this problem, the weighted prediction error 
function (Menke, 1989) is used 

 ,He eε = Λ  (20) 

where H superscript denotes a complex-conjugate transpose and  

 .e w w= Γ −  (21) 

The least square solution of Equation 19 is given by 

 
1

,H Hw w
−

⎡ ⎤= Γ ΛΓ Γ Λ⎣ ⎦  (22) 

where Λ is a diagonal matrix containing a weighting function and its components are 
given by 

 ( ) ,nm x nmw n k δΛ = ∆  (23) 

where w  is a box-shaped weighting function and the components of Γ are given by 

 ( )exp .nm xin k m xΓ = ∆ ∆  (24) 

To design the so-called smooth phase-shift operator such as, the exact phase operator 
w is equal to the phase-shift operator for the propagating waves. In the evanescent region 
(outside the band of interest) the amplitude and phase are defined by a cubic spline which 
goes smoothly to zero. The spectrum of the w  be defined by 
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where maxα is the maximum propagation angle of interest. Then w is used in Equation 22 
to obtain w or the final extrapolator. 

THEORY OF FOCI EXTRAPOLATOR 

Operator stability is enhanced by the design of a forward operator for one-half the 
intended depth step and its conjugate inverse (hence the FOCI acronym), which are then 
convolved to form the final operator. The forward operator is created by simply applying 
a spatial localizing window to the theoretical operator. Then a band-limited inverse to the 
forward operator is designed as a Wiener filter.  The wavenumber band of this inverse 
design is restricted to the non-evanescent wavenumbers.  The resulting Wiener filter has 
an amplitude spectrum that stabilizes the forward operator and a phase spectrum that is 
the negative of the forward operator. The sign of the phase is reversed (complex 
conjugation) and the forward operator is convolved with its designed conjugate inverse.  
The result is a much more stable operator that has the correct phase for a full depth step 
(see Margrave et al., 2004 for the full mathematical derivation).   

Achieving great computational efficiency usually means trying to find a short, stable 
operator with good phase accuracy.  The standard approach of using an operator whose 
length (in points) is fixed and independent of frequency, usually means that some range 
of low frequencies will be handled poorly.  This is because the evanescent boundary 
moves to lower wavenumbers with decreasing frequency. Generally, for a sufficiently 
low frequency, with n equally spaced samples across the wavenumber spectrum, most of 
the designed wavenumber samples will be in the evanescent region. Since only the non-
evanescent wavenumbers have useful phase information, the resulting operator will be 
very inaccurate and relatively unstable.  This issue is addressed in FOCI method by 
breaking the seismic dataset into “frequency chunks” and then spatially resampling each 
chunk (Margrave et al., 2004).  The purpose of the spatial resampling is to place the 
Nyquist wavenumber just above the highest non-evanescent wavenumber thereby forcing 
most of the n design wavenumbers to fall in the wavelike portion of the spectrum.     The 
spatial resampling is implemented with a boxcar low-pass filter in the wavenumber 
domain.  This eliminates any possible aliasing and also serves as a kind of evanescent 
filter.  There are a number of benefits to spatial resampling and these include: (1) better 
operator phase control (more accuracy), (2) increased stability, (3) approximate 
evanescent filtering, (4) dramatic reduction of the data volume.  The net effect is that 
accuracy and stability is improved with a large increase in computational efficiency. 
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COMPARISON OF AMPLITUDE AND PHASE SEPCTRA OF HALE ,WLSQ, 
AND FOCI EXTRAPOLATORS 

Hale’s extrapolator has some problems 

• there is no direct formula for choosing the number of terms, M,  to match the 
truncated Taylor’s series of the exact phase transform, 

• there is a relatively large phase error, 

• it is expensive to calculate the extrapolator due to computing the high order 
derivatives of the exact phase transform in order to solve for the weight 
function, 

• it cannot handle high angles of propagation with short operators. 

Consequently, choosing a constant M value will cause some normalized frequencies to 
be unstable (Figure 1.a). To make this filter stable for all normalized frequencies, 
different normalized frequencies should have different M values. By breaking the 
normalized frequencies into small ranges and assigning a different M value for each 
range, stability can be achieved for all normalized frequencies. This process is done 
subjectively (Figure 1.b), requiring the inspection of each operator for each frequency to 
ensure that the correct M value has been chosen. In addition, the phase error associated 
with Hale’s extrapolator is a direct result of matching fewer terms to the truncated Taylor 
series so that the remaining degrees of freedom are used to ensure stability. Furthermore, 
for longer extrapolators, it can be computationally expensive to design the extrapolator 
because of taking the higher order derivatives of the exact phase-shift operator.  

The stability of the WLSQ extrapolator is less than Hale’s but has a controllable 
instability. A stable extrapolator as defined by Thorbecke et al (2004) must have 
amplitudes that are much less than 1.001 for all wavenumbers.  Our analysis shows that 
Thorbecke has two major problems 

• the extrapolator is sensitive to the stability factor that is added to the weighting 
function, 

• the condition of the operator amplitudes to being much less than 1.001 is 
obtainable only for small depth steps and long operators. 
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           (a)      

 

(b) 

 

FIG 1. Amplitude spectra of Hale’s extrapolators for different normalized frequencies in the 
frequency-wavenumber domain for (a) constant M and (b) varying M. The frequencies are from 
10-100 Hz incrementing by 10 Hz, v=2000 m/s, x z∆ = ∆ = 10 m, and M=1-8 depending on the 
value of 2 * * * /pi f x v∆ .  

Consequently, the WLSQ extrapolator can not yield stable results for larger depth 
steps and short operators, which reduces its efficiency. Figure 2a shows that the 25-point 
extrapolator is stable or its amplitude is much less than 1.001 only for small depth step. 
When using a shorter operator and fixing the other parameters, even for small depth step 
size, the extrapolator becomes less stable (Figure 2b). Figure 2c shows that changing the 
depth step from 2 to 10 meters reduces the stability of the 25-point extrapolator. For large 
depth steps, longer operators have much better stability (Figure 2d). The operator stability 
is a function of the depth step size and its length. On other hand, once correct parameters 
have been chosen, the WLSQ extrapolator can very well handle lateral velocity variations 
and high angles of propagation as we shall see. Further, the extrapolation table can be 
calculated is computationally much cheaper than Hale’s. 
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 (a)      (b) 

  

(c)      (d) 

 

FIG 2. Stability of WLSQ extrapolator is a function of the size of depth step and operator length. 
(a) 10 ,x m∆ = 2z m∆ = , operator length=25 points, velocity=2000m/s, frequency=50 Hz, and 

maxα =75 degrees. (b) Same parameters as (a) but with operator length of 19-point. (c) Same 
parameters as (a) but with z∆  equal to 10m. (d) Same parameters as (c) but with operator length 
of 101 points. 

FOCI is not perfectly stable but also has a controlled instability. It is less stable than 
Hale’s but also has less phase error and can migrate high angles of propagation. Also, it 
does not have to have a value for each frequency range as in Hale’s method where each 
range is assigned a different M value. Further, the table of operators can be calculated in a 
much faster time.  On other hand, FOCI is more stable than the WLSQ and its stability is 
not as sensitive to the size of the depth step or operator length as in WLSQ.  Figure 3a 
shows a comparison among the three extrapolators. FOCI’s extrapolator exhibits a better 
stability than WLSQ’s even for small depth steps. However, the FOCI extrapolator is less 
stable than Hale’s but with a broader amplitude spectrum, which means that it is more 
effective in handling the high angles of propagation. When increasing the depth step size 
from 2m to 10m, the stability of FOCI’s extrapolator does not change as much as the 
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WLSQ’s (Figure 3b). Moreover, the FOCI’s extrapolator has less phase error than Hale’s 
and WLSQ’s extrapolators (Figure 3c). 

 (a)      (b)  

 

(c) 

 

FIG 3. A comparison between the amplitudes of Hale’s , FOCI’s, and WLSQ’s extrapolators. (a) 
10 ,x m∆ = 2z m∆ = , operator length=19 points, velocity=2000m/s, frequency=50 Hz, and 

maxα =75 degrees for Thorbecke’s extrapolator and ρ =0.01 for FOCI. (b) 10 ,x m∆ = 10z m∆ = , 

operator length=31 points, velocity=2000m/s, frequency=50 Hz, and maxα =75 degrees for 
WLSQ’s extrapolator and ρ =0.01 for FOCI. (c) The phase error of the three extrapolators using 
the parameters of (b) where the dashed line is to show the evanescent boundary. 
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Despite the facts that the FOCI extrapolator has less phase error than Hale’s and is 
more stable than Thorbecke’s it does not have a strong attenuation for the evanescent 
waves. In designing a FOCI extrapolator, the parameter, ρ, that controls the degree of 
evanescent attenuation in the final operator is set to a small number (<1).  However, it is 
not necessary to apply the full evanescent attenuation with every step because the 
evanescent wavenumbers are rapidly driven into numerical insignificance by just one or 
two filter applications.  Since operator stability increases as ρ decreases, it makes sense to 
build two operator tables, one that applies strong attenuation (say with ρ=1) and the other 
that applies very little attenuation (say with ρ=0.01).  Most marching steps can then be 
taken with the ρ=0.01 table and the ρ=1 table can be invoked, for example, every 10th 
step. 

MIGRATION RESULTS OF SYNTHETIC DATA 

Impulse responses of Hale, WLSQ, and FOCI extrapolators 

The impulse responses of the three extrapolators are used to analyze their accuracies. 
The zero-offset experiment is done with operator length of 31 points in a homogenous 
medium, a receiver spread of 1280 meter, a maximum extrapolation depth of 1280 
meters, a velocity of 2000 m/s, and a spatial and vertical spacing of 10 ,x m∆ = 10z m∆ = . 
The trace in the center of the zero-offset section contains five Ricker wavelets at 0.0600, 
0.1240, 0.1880, 0.2520, and 0.3160 seconds. The sample rate is 4 ms and the dominant 
frequency of the Ricker wavelet is 30 Hz.   Figure 4 shows the impulse responses of 
Hale’s, WLSQ’s, and FOCI’s extrapolators. While Hale’s extrapolator could not migrate 
high angles of propagation, WLSQ’s and FOCI’s extrapolators show that they can better 
handle high angles of propagation.  

(a) 
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(b) 

 

(c) 

 

FIG 4. Impulse responses of (a) Hale’s, (b) WLSQ’s, (c) and FOCI’s extrapolators for 
velocity=2000 m/s, 10 ,x m∆ = 10z m∆ = , 31-point operator, maxα =75 degrees for WLSQ’s 
extrapolator and two tables for FOCI with ρ =0.01 and ρ =1.0 applied every 10th step, length of 
inverse operator for FOCI=71 points, The FOCI result was obtained using the spatial resampling 
technique.  
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Migration results of Marmousi data using Hale, WLSQ, and FOCI extrapolators 
The Marmousi dataset is usually used to test the accuracy of migration algorithms due 

to its strong lateral velocity variations and steeply dipping events. These data will be used 
as a second test to further analyze Hale, WLSQ, and FOCI extrapolators in the presence 
of strong lateral velocity variations and steeply dipping events.  

The prestack depth migration of this data will be done by the reflector mapping 
method. The principle of reflector mapping was first introduced by Claerbout in 1971. 
The basic principle of reflector mapping is that reflectors exist in the subsurface when the 
first arrival of the downgoing wave is time coincident with the upgoing wave. This can 
give the correct phase but not the amplitude at the reflector. To get the correct amplitude 
at the reflector, Claerbout defines it as the ratio of the upgoing and downgoing wavefields 
at the subsurface imaging location. Geiger (2001) derived Claerbout’s reflector mapping 
as a reformulation of the Kirchhoff integral 

 ( ) ( )
( )

^ , ,1, ,
2 , ,

S G s
G s

i G s

P x x
R x x d d

P x x stability
θ

ω
ω ω

π ω

−∞

+
−∞

=
+∫  (26) 

where the stability factor is added to avoid dividing by zero after normalizing the data. 
Equation 26 can estimate a reflectivity map and is called the deconvolution imaging 
condition where ( ), ,S G sP x x ω− is the extrapolated wavefield to a subsurface 

location, Gx and ( ), ,i G sP x x ω+ is the modeled source from the surface to Gx .  

Figure 5 shows the velocity model for the Marmousi data. The FOCI method will be 
analyzed against the Hale and WLSQ methods separately. Figures 6a and 6b show the 
migration results of the Marmousi data using Hale’s and FOCI’s extrapolators. The 
operator length for both is 19 points. The computation times are 3.5 hours for Hale’s and 
2 hours for FOCI’s results on a desktop PC. The FOCI result has less computational cost 
because of the spatial resampling, which reduces the data volume. The images shown 
have 25x z m∆ = ∆ = spacing. The WLSQ image is not shown because we could not 
stabilize the operators for these specific parameters. The images have some aliasing due 
to a coarse sampling but the objective of this exercise is to investigate the stability of 
these methods with short operators and coarse sampling. Whilst both Hale and FOCI 
methods are stable for parameters, the FOCI image is superior to Hale’s and cheaper 
computationally. This example shows that even for short operators and coarse sampling, 
FOCI can yield a reasonable result, which shows the robustness of this method. 

Figures 7a and 7b show the migration result using WLSQ’s and FOCI’s extrapolators, 
respectively.  The operator length used for both is 69 points and the images have 

12.5x z m∆ = ∆ =  spacing. The run times are 23.7 and 15.8 hours for the WLSQ and 
FOCI results, respectively. The two results are comparable but the WLSQ is a little bit 
better. We think that the discrepancy between them can be attributed to the way that 
FOCI performs the evanescent filtering. Further, better ways can be developed to 
improve the evanescent filtering which will lead into better images.  
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However, building a table of operators using the WLSQ approach is not easy because 
it requires the inspection of each operator for each frequency to ensure its stability. This 
is one of the disadvantages of the WLSQ extrapolator. On the other hand, the FOCI 
method can build more stable operators for different set of parameters. However, in the 
FOCI method, two tables are calculated where the first table is used for extrapolation and 
the second one is used for evanescent filtering. Calculating tables using FOCI is 
relatively very fast and can be done in minutes so it is not a big issue. 

 

 

FIG 5. Velocity model that will be used to migrate the Marmousi data. 
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(a) 

 

(b) 

 

FIG 6. (a) Prestack depth migration results using (a) Hale’s extrapolator with 19 coefficients and 
(b) FOCI’s extrapolator (with spatial resampling) with two tables: ρ =0.01 used for extrapolation 
and ρ =1.0 applied every 10th step for evanescent filtering. The lengths of the forward, inverse, 
and windowed (final) operators are 19, 41, 19 points. 
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(a) 

 

(b) 

 

FIG 6. Prestack depth migration results of (a) the WLSQ method with operator length=69 points, 

maxα =75, and run time=23.7 hours and (b) the FOCI method (with spatial resampling) using two 
tables with ρ =0.01 and ρ =1.0 applied every 10th step, length of the inverse and forward 
operators 45 and 25 points, respectively and run time=15.8 hours 
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CONCLUSIONS 
In this paper, the FOCI method was evaluated and compared with other wavefield 

extrapolation methods. The other extrapolation methods are Hale and WLSQ. The Hale 
method has several problems: (1) each frequency range has to have a distinct M value and 
this is done subjectively; (2) it can not handle high angles of propagation; (3) it has a 
relatively large phase error; and (4) it is computationally expensive to calculate a table of 
operators.  

The WLSQ method is not perfectly stable but has a controllable stability. Its stability 
is directly related to the size of the depth step and operator length. Large depth steps and 
short operators could decrease its stability. Calculating a table of extrapolators using the 
WLSQ method is computationally very fast but requires the inspection of the amplitude 
of each operator to ensure its stability for a specific depth range.  

The FOCI method has also a controllable instability and less phase error than the Hale 
method. Unlike the WLSQ method, its stability is less sensitive to changing the size of 
the depth step and the operator length.  Further, the FOCI method with spatial resampling 
is computationally less expensive than the other two methods. This can make a big 
difference for 3-D prestack depth migration. However, it requires calculating two tables 
one for extrapolation and one for evanescent filtering. Unlike the Hale’s method, 
calculating the extrapolation tables can be done in a much shorter time. The FOCI’s 
images were superior to Hale’s and comparable to WLSQ’s.  

The Hale method was introduced in 1991, and the revised WLSQ method was 
introduced in 2004; but the original WLSQ method was first introduced in 1994 by 
Thorbecke and Rietveld. On the other hand, the FOCI method is only two months old and 
its preliminary results show that it is a very promising technique for seismic imaging that 
combines both stability and efficiency. Furthermore, the FOCI can even be improved 
further by developing new techniques for evanescent filtering.   
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