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Spherical-wave AVO-modelling in elastic VTI-media 

Arnim B. Haase and Charles P. Ursenbach 

ABSTRACT 
The AVO response of two-layer VTI models for AVO Class I is investigated. 

Graebner/Rueger reflection coefficients and the “Weyl-integral for anisotropic media” 
are utilized for the computation. Spherical wave results are compared with the plane-
wave reflectivity. Depth dependence of spherical wave AVO is found to be strongest near 
critical angles, as was observed in the isotropic situation. Both C-wave AVO and P-wave 
AVO are more sensitive to changes in anisotropy than to changes in depth. 

INTRODUCTION 
Previous spherical wave AVO investigations by the authors are restricted to isotropic 

media (Haase, 2004; Haase and Ursenbach, 2004). However it is well known that in 
many situations anisotropy is present either in the form of apparent anisotropy caused by 
layering or intrinsic anisotropy caused by, for example, shale layers. This type of 
anisotropy is usually called VTI (transversely isotropic with a vertical axis of symmetry). 
Rock fractures can cause HTI (horizontal symmetry axis TI) or also orthotropic 
anisotropy and these are not considered in this study.  

Early work on spherical wave AVO by Hron et al. (1986) investigates anisotropy 
using asymptotic ray theory. They note that “anisotropic media produce noticeable 
differences in both amplitude- and time-distance curves as a function of the degree of 
anisotropy”; they also show amplitude-distance plots. 

Previous work by the authors involved plane wave particle motion reflection 
coefficients given by Zoeppritz’s equations and the Weyl/Sommerfeld integral for 
computing isotropic spherical-wave potentials. Plane-wave particle motion reflection 
coefficients for VTI media have been presented by Graebner (1992) and in refined form 
by Rueger (1996). The Weyl-integral for anisotropic media is given by Tsvankin (2001). 
Their “exact” equations are utilized in this study. Approximations are introduced by 
performing numerical integrations. 

THEORY 
The displacement from a point force located at the origin is given by the following 

summation over plane waves (Tsvankin, 2001; equations 2.1-2) 
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where z = x3 is the vertical receiver coordinate, r is the horizontal offset, α is the source-
receiver azimuth with respect to the x1-axis, Φ(ω) is the Fourier transform of the source 
pulse, p is the slowness vector with components {p1 = p0cosφ, p2 = p0sinφ, p3}, and U(ν) is 
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the displacement vector. For VTI media, there is no dependence on azimuth and the 
integration over dφ can be carried out analytically. 

An explosive source (point source) can be modeled by three force pairs (Aki and 
Richards, 1980). Applying moment tensor methods leads, in cylindrical coordinates, to 
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where Rpp(p0) and the vertical slownesses ξ and η are given from plane-wave analysis 
(Graebner, 1992; Rueger, 1996). Similar equations have been developed for the 
converted wave case. The mathematical details can be found in Ursenbach and Haase 
(2005). 

The integrations shown in equations (3) and (4) compute particle motion, one 
frequency point at a time. Then we proceed as in the isotropic situation: When all 
frequency points have been computed for the desired output bandwidth, the time domain 
response is found by inverse Fourier transform, and quadrature traces are determined by 
Hilbert transform; from these two trace types spherical-wave amplitudes are calculated. 

MODELLING 
The same two-layer model as was utilized in the isotropic situation (Haase, 2004) is 

also employed in this study. The layer parameters are α1 = 2000 m/s, β1 = 879.88 m/s, ρ1 
= 2400 kg/m3, α2 = 2933.33 m/s, β2 = 1882.29 m/s and ρ2 = 2000 kg/m3. As before, a 
5/15-80\100 Ormsby wavelet is chosen as the source signature; a P-wave point source is 
assumed. VTI-type anisotropy of the top layer is introduced in two steps: weak 
anisotropy (ε = 0.15, δ = 0.05) and moderate anisotropy (ε = 0.3, δ = 0.1); the bottom 
layer is always assumed to be isotropic. VTI radiation patterns and free surface effects 
are ignored in this study. 

The appearance of the computed AVO results depends on scaling. Spherical spreading 
must be compensated for if results are to be compared to plane-wave responses. The P-
wave examples shown in this report give magnitude displays normalized to the response 
magnitude obtained when reflection coefficients RPP in equations (3) and (4) are set to 
unity. When RPS is set to unity for C-wave examples, the scaled result oscillates relative 
to the plane-wave result at small incidence angles. In this region geometrical spreading 
factors are computed (Krebes and Slawinski, 1991) and calibrated to plane wave 
responses. These calibrated geometrical spreading factors depart from unity RPS scaling at 
large incidence angles. For the converted wave case the Figures shown give magnitude 
displays scaled by a combination of unity RPS and calibrated geometrical spreading 
factors with a transition region at the midrange of incidence angles. Figures 1 give an 
example for this mode of scaling.  



Spherical-wave VTI-AVO 

 CREWES Research Report — Volume 17 (2005) 3 

Figure 2 compares AVO Class I spherical C-wave responses for weak and moderate 
VTI. Figure 3 shows anisotropic plane wave comparisons. Figures 4 and 5 display the 
equivalent P-wave responses. Figures 6 and 7 demonstrate depth dependence of weak and 
moderate VTI spherical wave AVO. In computing these figures, actual particle motion is 
projected onto the ray direction for P-waves and onto the perpendicular to the ray 
direction for C-waves. 

DISCUSSION AND CONCLUSIONS 
Inspection of layer velocities given in the previous section shows an increase across 

the interface. Because of this velocity increase critical angles exist and head waves are 
generated for Class I AVO models. Increasing top layer VTI-type anisotropy decreases 
this velocity contrast and a shift of the critical point towards larger angles is expected. 
Figures 2 and 4 prove this to be the case. A similar shift can be observed in Figures 3 and 
5, giving anisotropic plane wave comparisons. Note the indicated zero crossing in these 
AVO-magnitude displays. Increasing VTI-type anisotropy pushes this crossover point to 
ever higher angles, meaning the AVO gradient is decreasing for lower angles. The 
spherical wave VTI AVO depth dependence is displayed in Figures 6 and 7. For both 
weak and moderate anisotropy, larger depths “tweak” the AVO response near the critical 
point to lower angles toward a plane wave comparison. Both C-wave AVO and P-wave 
AVO are more sensitive to changes in anisotropy than to changes in depth. 

In anisotropic materials particle motion is not in the propagation direction for P-waves 
or perpendicular to the propagation direction for S-waves. The terms used in the literature 
are quasi-P-waves (qP) and quasi-S-waves (qS). For the above displays the actual particle 
motion is projected onto the propagation direction (at the ray angle) for P-waves and onto 
the ray angle perpendicular for C-waves. 
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FIG. 1a. Spherical PS wave scaling example. 

 

 

 

FIG. 1b. Difference plot for scaling example. 

 



Spherical-wave VTI-AVO 

 CREWES Research Report — Volume 17 (2005) 5 

 

FIG. 2. VTI AVO-Class 1 spherical wave PS reflection coefficient (z=500m). 

 

 

 

FIG. 3. VTI AVO-Class 1 plane wave PS reflection coefficient. 
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FIG. 4. VTI AVO-Class 1 spherical wave PP reflection coefficient (z=500m). 

 

 

 

FIG. 5. VTI AVO-Class 1 plane wave PP reflection coefficient. 
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FIG. 6. VTI AVO-Class 1 spherical wave PS reflection coefficient. 

 

 

 

FIG. 7. VTI AVO-Class 1 spherical wave PP reflection coefficient. 


