
Migration velocity analysis 

 CREWES Research Report — Volume 17 (2005) 1 

Migration velocity analysis by the common image cube analysis 
(CICA) 

Saleh M. Al-Saleh, Gary F. Margrave, Hugh D. Geiger, and John C. Bancroft 

ABSTRACT 
Wavefield extrapolation methods are powerful for handling strong lateral velocity 

variations. However, they require an accurate velocity model to produce good images. 
There are many different migration velocity methods; but most of them make some 
simplifying assumptions about the subsurface, which reduces their ability to exploit the 
power of wavefield extrapolation methods.   

In this report, we reformulate some well-known migration velocity methods, like 
residual curvature analysis (RCA), depth focusing analysis (DFA), and common focus 
point (CFP) analysis into mathematical hypotheses. This reformulation puts them in the 
same context, so they are easier to understand and compare. Further, by restating the 
methods as mathematical hypotheses, they are easier to relate to other disciplines such as 
mathematics and physics.  

We also combine different aspects of the RCA, DFA, and CFP methods into a new 
migration velocity analysis approach called the common image cube analysis (CICA). 
Instead of simply taking the zero-lag crosscorrelation at each depth level, we store all the 
crosscorrelation lags. The result is a cube that contains more prestack information than 
the other methods. Slicing this cube at different lags forms a series of common image 
gathers (CIGs), where the conventional CIG can be obtained by slicing the cube at the 
zero lag.  

When the background velocity model used for migration is different from the true 
velocity model, the best-focused CIG is not at zero lag.  Searching the cube at other lags 
for the most focused CIG gives the traveltime shift that is needed to approximately 
equalize the traveltimes of the upgoing and downgoing wavefields. From the updated 
traveltimes, the true velocity can be estimated. This approach is tested on models with 
constant velocity as well as velocity varying with depth, and the results show that it can 
be used to yield an accurate estimate of the true velocity when the wrong velocity model 
is used for migration. 

INTRODUCTION 

Wavefield extrapolation methods are more powerful than the ray-based methods in 
handling strong lateral velocity variations. Wavefield extrapolation methods are also very 
sensitive to the velocity models (Berkhout, 1982; Yilmaz and Chambers, 1984; 
Claerbout, 1985; Al-Yahya, 1989; Deregowski, 1990; Liu and Bleistein, 1994; Varela et 
al., 1998). Using inaccurate velocity models in wavefield extrapolation methods can 
generate low quality images. The sensitivity of wavefield extrapolation methods makes 
them a good tool for velocity analysis.  

There are different methods for migration velocity analysis (MVA). One of oldest 
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methods is the depth focusing analysis (DFA) (Yilmaz and Chambers, 1984; Faye and 
Jeannot, 1986), which analyzes the energy build-up at the zero offset (source-receiver 
offset) in a depth focusing panel. In DFA, a migration velocity is acceptable if the 
difference between the focusing and migration depths is zero. In the literature, the DFA is 
described and constructed on the basis of shot-geophone migration (the survey sinking 
concept (Claerbout, 1985). In this method of migration, all the shot gathers are 
extrapolated to a depth level, and then sorted into receiver gathers, which are downward 
extrapolated to the same depth level. The reflectivity image at this depth level can be 
extracted by applying the zero-time and zero-offset imaging conditions. In DFA, the 
zero-time imaging condition is relaxed and only the zero-offset imaging condition is 
invoked. Storing this zero-offset trace for all depth levels forms a panel for a specific 
lateral position. The equivalent procedure in a source profile migration is to downward 
continue all the shot gathers to a depth level, and then to forward model all the sources to 
the same depth level. We sort the downward extrapolated shots (upgoing wavefield or the 
data) for a lateral position and we do the same thing to the modeled sources (downgoing 
wavefield). The result is two gathers for each lateral position for each depth level. The 
two gathers are cross-correlated and the result is stacked over offset to give one trace at 
each lateral position for each depth level. The value at zero-lag of all such traces for all 
lateral positions and all depths forms the final reflectivity image. Storing this trace at 
each depth level creates a focusing panel for a specific lateral position. This is consistent 
with the Berkhout (2001) description of DFA as a double focusing method. The first 
focusing occurs when extrapolating the data to this depth level and the second occurs 
when stacking all the offsets. Any traveltime information about the upgoing and 
downgoing wavefields at the subsurface grid point is lost. Most inversion formulas for 
the DFA analysis make simplifying assumption about the subsurface and they may fail in 
the presence of strong lateral velocity variations or steep dips.  

The residual curvature analysis method (RCA) (Al-Yahya, 1989) is another MVA 
method. After prestack migration of common source, receiver, or offset gathers, the 
imaged multichannel data are sorted into common image gathers (CIGs). The data in each 
common image gather have the same imaged horizontal location. RCA analyzes the 
curvatures on the common image gathers (CIGs), where the migration velocity is 
acceptable if the difference between imaged depths from different offsets is minimal. 
Inversion formulas are available to analyze the residual moveout on the CIGs and invert 
for the true velocity (e.g. Lee and Zhang, 1992; Liu and Bleistein, 1994). Most of the 
inversion formulas are derived based on small offset and smooth lateral velocity 
variations. Under these assumptions, the estimated velocities may be a good 
approximation to RMS velocities, so that the estimated velocities can be converted into 
interval velocities using the Dix equation or other similar formulas (Liu and Bleistein, 
1994). In the presence of strong lateral velocity variations, these estimated velocities may 
differ significantly from the RMS velocities (Lynn and Claerbout, 1982; Liu and 
Bleistein, 1992). As a result, the velocity-updating procedure may not converge to the 
correct velocity model. 
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The common focus point (CFP) analysis (Berkhout, 1997.a; Berkhout, 1997.b) is 
similar to DFA but it only involves a single focusing where the data are extrapolated to 
an initial guess of the reflector depth. Then the downward extrapolated shots (upgoing 
wavefield or the data) and the modeled sources (downgoing wavefield) are sorted for a 
lateral position to form two gathers.  In the CFP approach, the background velocity model 
is acceptable if the traveltimes of two events in these gathers are equal at the initial guess 
of the reflector. The CFP approach uses the differential time shift (DTS) panel as a tool to 
test the principle of equal traveltimes. The DTS is formed by crosscorrelating the two 
gathers, which generates another event in this panel (Berkhout, 1997.b; Berkhout, 2001). 
Using a correct velocity model will result in a flat event at the zero-lag in the DTS panel. 
Note that the values at the zero-lag of the DTS panel give the same values in the CIG of 
the same lateral position at the depth of the initial guess of the reflector. Furthermore, 
stacking all the traces in the DTS panel over offset produces the same trace that goes into 
the DFA panel. 

Although these methods may seem different from each other, they all are related. 
However, each method lacks some worthwhile features of the others. For example, in 
DFA we do not use the CIGs and in CFP we do not use the focusing depth. We propose 
the common image cube analysis (CICA) migration velocity analysis method, which 
combines different aspects from existing methods into a more general approach. Instead 
of retaining only the zero-lag value at each depth level, we store all the lags and form an 
image cube for a velocity analysis location. The three dimensions of this cube are depth, 
offset, and lag. 

Next we present a brief description of prestack migration of individual source records 
in order to explain our notation, which is essential for a precise description of the various 
methods.  Then we describe RCA, DFA, and CFP from a mathematical perspective and 
state them as hypotheses.  Next, we introduce the theory of CICA and state the 
corresponding imaging hypothesis.  Simple numerical examples with velocity models 
that are either constant or depth variant are then used to show that CICA can be used to 
approximate the true velocity model. The reasons for using simple models in our tests are 
two fold: (1) they better illustrate the concept behind this approach and (2) for dipping 
events in a constant velocity medium with large perturbations, CICA can give an accurate 
estimate of the true velocity while the other approaches need a couple of iterations to 
achieve an accurate estimate.  

SHOT PROFILE MIGRATION USING EXPLICIT WAVEFIELD 
EXTRAPOLATORS 

In shot profile migration, the upgoing and downgoing wavefields are extrapolated 
separately. Wavefield extrapolation can be done in the xω − domain as a nonstationary 
convolution between the input wavefield using a table of extrapolators, where for each 
output point a potentially different operator is used (Holberg, 1988; Hale, 1991; 
Margrave et. al., 2005; Al-Saleh and Margrave, 2005). We assume that a background 
velocity model, ( ),mV x z , is available to define the extrapolation operators. The 2D 
downward-extrapolated, upgoing wavefield, ( ), , , ;s mU x x n z Vω− ∆ is given by 
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 (1) 

 where s  is an integer shot index ranging from 1 to N (number of shots), z∆  is the depth 
step, x  is the transverse coordinate, sx  is the shot coordinate,ω  is the temporal 
frequency, and k is an integer such that k z∆  gives a particular depth, n is positive integer 
such that n z∆ gives the maximum depth of interest, oU − is the Fourier transform over the 
temporal coordinate of the recorded wavefield at the surface, and the cascade of 
wavefield extrapolation operators ( )k z mL V∆  is described by  

 ( ) ( ) ( ) ( ) ( )11
........m m m m

n

k z n z zn zk
V V V VL L L L∆ ∆ ∆− ∆=

∏ = . (2) 

In this expression ( )k z mL V∆  means an operator that depends upon ( ),mV x z  but operates 
on a wavefield, and  denotes operator composition.  In a one-way, primaries only, 
wavefield extrapolation, the kth operator depends only upon that part of ( ),mV x z  in the 

interval ( )[ ]1 ,z k z k z∈ − ∆ ∆ . The recorded wavefield at the surface is described by 

 ( ), ,0,o sU U x x ω− −= . (3) 

Applying the first operator to the recorded or upgoing wavefield can be described by 

 ( )( )( ) ( ) ( )1 1
1
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π

− −
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Also in equation (7) ( )kV x  is some appropriate average of ( ),mV x z  

over ( )1 ,z k z k z⎡ ⎤∈ − ∆ ∆⎣ ⎦ .  Similarly, the forward-modeled source, or downgoing 

wavefield, ( ), , , ;s mD x x n z Vω+ ∆ , is given by 
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 ( ) ( ) ( )*
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∆

=
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where ‘*’ indicates the complex conjugate.  Equation (8) expands to  

 ( ) ( ) ( ) ( ) ( )* * *
1, , , ; ...........s m n z m m z m on zD x x n z V L V L V L V Dω+ +

∆ ∆− ∆∆ =  (9) 

 
where 

 ( ), ,0,o sD D x x ω+ +=  (10) 

and  

 ( ) ( ) ( )*
1

1 , ,0, , ,
2z m o s kL V D D x x W x x x dxω ω
π

∗ + +
∆ =′ ′ ′= −∫ . (11) 

So the downward-extrapolated upgoing and forward-modeled downgoing wavefields 
to a depth level z can be obtained by applying a cascade of operators (equations (1) and 
(8)). Equations (4) and (11) are equivalent to the generalized phase-shift-plus-
interpolation (GPSPI) method (Margrave and Ferguson, 1999), which is the limiting form 
of PSPI (Gazdag and Squazerro, 1984). However, W  that is used in the equations above 
is not compactly supported. In fact it is known to be a first-order Hankel function of the 
first kind (multiplied by a simple scalar). There are different methods that can be used to 
design stable, compactly supported operators that can be used in a similar fashion to 
equations (4) and (11). In this report, we will use the enhanced forward operator and 
conjugate inverse (FOCI) algorithm to perform the shot profile migration (Margrave et 
al., 2005; Al-Saleh and Margrave, 2005). Using the FOCI approximation to W  instead of 
the exact kernel in equations (4) and (11) is a highly accurate approximation to GPSPI. 

RCA APPROACH 
A stacked section, or reflectivity image, from 2D prestack depth migration may be 

obtained by applying the cross-correlation imaging condition (Claerbout, 1985) and 
summing over all the shots  

 ( ) ( ) ( )*, ; , , , ; , , , ;o m s o m s o m
s

I x z V U x x z V D x x z V dω ω ω− +=∑∫  (12) 

where we denote a specific inline coordinate by 0x  and have set z n z= ∆ . ( ), ; moI x z V  
does not have any prestack information, meaning that it only shows the average 
reflectivity as seen over the available incidence angles at any point in (x,z) (de Bruin et. 
al., 1990). One way to get prestack information is to use a common image gather ( ciG ) 
defined as 
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 ( ) ( ) ( ) ( )0*, , ; , , , ; , , , ; i
ci s o m s o m s o mG x z V ex U x x z V D x x z V dω τω ω ω=− += ∫  (13) 

In equation (13) we explicitly note that only the zero-lag value ( )0τ =  has been used. 
The following hypothesis describes the basics of residual curvature analysis (RCA) that 
uses the CIGs.  We use the term background velocity model to describe the velocity field 
used for the imaging process that creates the CIGs; and image depth will refer to the 
depth at which a reflector appears in the imaging process.  Generally, the background 
velocity model will resemble but not equal the true velocity field.  The image depth will 
approach the true reflector depth when the background model approaches the true field.  
We will also make the trivial coordinate transformation in each CIG from source 
coordinates to offset coordinates defined by 0h sx x x= − .  Thus we label each trace in a 
CIG by the lateral distance (offset) from the image point, 0x , to the surface source 
location, sx .   

The RCA imaging hypothesis: A velocity model is correct when reflection events in the 
CIG’s are essentially invariant with offset (flat).  

For a 2D dataset of N shots, having a maximum temporal signal frequency of 
( ) 1

max max2f π ω−= , and a prestack depth migration resulting in a set of common image 
gathers ( ( )0, , ;ci h mG x z Vx ) using a background velocity model, mV , let a reflection event 
in a specific common image gather at lateral position 0x  be identified with the trajectory 
( )e hz x  with offset coordinates 0h sx x x= −  ranging from xα  to xβ .  That is 

( )( )0, , ;ci h e h mG x z z Vx x=  is identified with the reflection event.  Then we will say that 

mV  is correct to δ  wavelengths, and write mV Vδ= , for lateral position 0x  and image 
depth z  if there exists a dimensionless number 0δ>  such that   

 ( ) min2
,e sz x z δλ− ≤  (14) 

where 2  denotes the L2 norm and  

 ( )( )mean , ,e h hz xz x x xα β∈ ⎡ ⎤= ⎣ ⎦  (15) 

and 

 
( )0

min
max

,mV x z
f

λ = . (16) 

■ 
 

In other words, when using a background velocity model that resembles the true 
velocity field, the event, ( )e hz x , will appear as a flat event (i.e. nearly constant depth) on 
the CIG and a smile or frown otherwise (Zhu et. al., 1998). There are many inversion 
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formulas that analyze the residual moveout on the CIGs to invert for a velocity model 
that approximates the true velocity field (Lee and Zhang, 1992; Liu and Bleistein, 1994). 
The problems with these inversion formulas are two fold: (1) most of them are derived 
based on small offset and smooth lateral velocity variations and (2) the difference 
between the background velocity and true velocity field is small. If these assumptions are 
not valid then RCA might fail to approximate the true velocity field. 

DFA APPROACH 
In the depth focusing analysis (DFA), the zero-lag imaging condition is relaxed and 

the offsets are stacked to give one trace.  To facilitate this, we generalize the CIG 
definition of equation 13 to define depth focusing gathers as  

 ( ) ( ) ( )*, , , ; , , , ; , , , ;  i
df h o m s o m s o mG x z V ex U x x z V D x x z V dωττ ω ω ω− += ∫  (17) 

which simply generalizes equation (13) to non-zero lag.  Here again 0h sx x x= − . Thus 
( )0df ciG Gτ = = . 

The basics of DFA can be described using the following hypothesis. 

DFA imaging hypothesis:  A velocity model is correct when the maximum stacked power 
of the depth focusing gathers occurs at zero lag.   

For a 2D dataset of N shots, having a maximum temporal signal frequency of 
( ) 1

max max2f π ω−= , and a prestack depth migration resulting in a set of depth focusing 
gathers ( ( ), , , ;df h o mG x z Vx τ ) using a background velocity model, mV , let the gathers be 
stacked over offset to define the stacked power function  

 ( ) ( )
2

0 0

2

, , ; , , , ;
h

m df h m
x

z V G x z Vx xτ τσ = ∑  (18) 

and then define the lag, 0τ , of the peak power by 

 ( ) ( )0 0 0, , , , ;; maxm mz V z Vx xττ τσ σ⎡ ⎤= ⎣ ⎦  (19) 

We say that a reflector exists at every depth for which a distinct maximum can be found. 

Then, for a fixed depth fz z=  called the focusing depth, we say the velocity model is 
correct to ε  periods, and write mV Vε= , if there exists an 0ε>  such that  

 0 maxfτ ε< . (20) 

As 0ε→  the focusing depth is assumed to approach the true reflector depth. 
■ 
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DFA uses the stacked power to measure the velocity error. Most inversion formulas 
for the DFA analysis make simplifying assumptions about the subsurface and they may 
fail in the presence of strong lateral velocity variations and steep dips. Further, it might 
be difficult to find the focusing depth due to spurious focusing (MacKay and Abma, 
1993). 

CFP APPROACH  

By looking at upgoing and downgoing wavefields before invoking the imaging 
condition, we can have two gathers in the time domain. The downward-extrapolated, 
time-domain, upgoing wavefield is given by  

 ( ) ( )1
, , , ;

2
, , , ;s m

i t
s mu x x z t V U x x z V e dω

π
ω ω− −= ∫  (21) 

and the forward-modeled, time-domain, downgoing wavefield is given by  

 ( ) ( )1
, , , ;

2
, , , ;s m

i t
s md x x z t V D x x z V e dω

π
ω ω+ += ∫  (22) 

The following hypothesis describes some basics of the CFP approach. 

The CFP imaging hypothesis: The velocity model is correct when the downgoing 
wavefield matches an event in the upgoing wavefield.  

As in DFA, a 2D dataset of N shots, having a maximum temporal signal frequency 
of ( ) 1

max max2f π ω−= , is passed into a prestack depth migration, using a background 

velocity model, mV , and with a pre-selected set of depth locations, ( ) [ ]0 , , 1, 2,ix z i M∈ .  
At each of these locations we estimate separately the upgoing time-domain 
wavefield, ( ) ( ), , , ; , ;h o i m i h mx z t V x t Vu x u− −≡ , and its downgoing sibling 

( ) ( ), , , ; , ;h oi i m i h mx z t V x t Vd x d+ +≡ .  Unlike DFA, we do not form the dfG  explicitly and 
we do not stack over offset.  At each of the M analysis locations, a reflection event is 
picked on the ( ), ;i h mx t Vu−  and its corresponding downgoing wave is picked 

on ( ), ;i h mx t Vd+ . If the velocity model is exactly correct, these two events will occur on 
precisely the same time-offset function ( )i ht x ; however, in general, we will have a 

function ( )ui ht x  on the upgoing wave and a different traveltime function 

( ) ( )di h ui ht x t x≠  on the downgoing wave.  The difference between these defines an 

offset-variant lag function ( ) ( ) ( )i h ui h di hx t x t xτ = − , which we will call the depth-
specific delay function, which is the fundamental measure of the velocity model 
mismatch that is provided by CFP.  These delay functions can be obtained directly by 
crosscorrelating ( ), ;i h mx t Vu−  with ( ), ;i h mx t Vd+  and picking the location of maximum 
absolute value of the crosscorrelation function on each trace.  In fact, the crosscorrelation 
of ( ), ;i h mx t Vu−  with ( ), ;i h mx t Vd+  is called the differential time shift panel or DTS panel 
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and is a common tool.  Since the dfG  are just such crosscorrelations at all depths then the 

DTS is simply a constant depth slice of the dfG .  The analysis of the dfG  as a cube in 

( )0, ,hx x z , as we will shortly describe, is not typically carried out.   

We say that mV  is correct to ε  periods, and write mV Vε= , at a position ( )0 , ix z  if 
there exists a nonnegative, dimensionless number ε  such that  

 ( ) max , ,i h hx f x x xα βτ ε ⎡ ⎤< ∀ ∈ ⎢ ⎥⎣ ⎦ , (23) 

■ 

The CFP approach is based on the principle of equal traveltime of events in the 
upgoing and downgoing wavefields (Berkhout, 1997.b), which states that if the velocity 
model is correct then the traveltime function, ( )0, ,d h rt x x z , of the first arrival of the 

downgoing field will match the traveltime function, ( )0, ,u h rt x x z , of a particular 
reflection at the reflector depth, rz .  In essence, this is simply a restatement of Claerbout’s 
imaging principle (Claerbout, 1976) which states that a reflector exists in the subsurface 
where the upgoing and downgoing wavefields are coincident in time.  While it is clear 
that a correct velocity model will have this property for a number of reflection events, it 
is not necessarily true that a model which satisfies this principle for a finite number of 
reflection events is close to the correct model.  In other words, this is a necessary 
condition but not, in general, sufficient.  

CFP analysis is similar to DFA in that, in principle, both create and analyze the 
gathers ( ), , , ;df h o mG x z Vx τ  specified by equation (17). Although CFP does not explicitly 
form these gathers, an equivalent process could do so.  DFA analyzes these gathers by the 
simple expedient of stacking over offset and looking for power maxima.  The result is 
just a single bulk estimate of a traveltime mismatch at each( )0 ,x z .  In contrast, CFP 
analyzes the data over offset without stacking and thereby, with greater effort, obtains 
estimates of traveltime mismatches as a function of offset for each analysis location.  The 
CFP information set is much richer than DFA and offers more potential for inversion to 
estimate the appropriate velocity model updates.   

By splitting ( )i hxτ  and applying half of it to the upgoing field and half to the 
downgoing field (as simple offset dependent time shifts), the velocity can be inverted 
from the updated traveltimes.  The depth-specific delay functions for a good migration 
velocity model should all satisfy ( ) max , ,i h hx f x x xα βτ ε ⎡ ⎤< ∀ ∈ ⎢ ⎥⎣ ⎦  for some 1ε< .  The 

criterion ,hx x xα β⎡ ⎤∀ ∈ ⎢ ⎥⎣ ⎦  is not mentioned in the original description of the CFP approach 
by Berkhout (1997.b).   

Figure 1 shows an example of CFP gathers. In this particular example, i rz z=  
and mV Vε= . Figure 1.a shows the final stacked section obtained with the correct 
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velocity and the analysis location (dashed line). Figures 1.b and 1.c show the upgoing, 
( )0, , ,h ru x x z t−  and downgoing wavefields, ( )0, , ,h rx x z td+ where 0 1000x = m in this 

particular example. Figure 1.d shows the DTS panel where ( ) maxi hx fτ ε< . Note also 

that when using mV Vε= , the depth-specific delay function, ( )i hxτ , should have no 
dependence on offset at the reflector depth.  These figures show that when mV Vε= , the 
extrapolated upgoing and downgoing wavefields at the reflector depth should have the 
same traveltime, which also means that, ( )0, ,h rx x zτ  is zero. Note that in this example 
there is only one event in each gather.  

THE COMMON IMAGE CUBE ANALYSIS APPROACH (CICA) 
We propose a method that combines some aspects of the RCA, DFA, and CFP 

methods. The following hypothesis describes this method.  

The CICA imaging hypothesis:  The velocity model must meet the RCA, DFA, and CFP 
criteria to be correct. It can be most easily assessed and updated by analyzing the entire 

dfG  cube at selected analysis location. 

As in DFA and CFP, a 2D dataset of N shots, having a maximum temporal signal 
frequency of ( ) 1

max max2f π ω−= , is passed into a prestack depth migration, using a 
background velocity model, mV , and resulting in a set of depth focusing gathers, 
( ), , , ;df h o mG x z Vx τ .  Unlike DFA and CFP, we now analyze the dfG  without stacking at 

a fixed lateral position and at all depths( )0 ,x z . Let a reflection event in a specific depth 
focusing gather obtained at some specific τ  at lateral position 0x  be identified with the 
surface ( ),e hz x τ  with offset coordinates 0h sx x x= − . Typically, this event will 
correspond to a set of local crosscorrelation maxima in the sense that  

 ( )( ) ( )( )0 0, , , , ; max , , , ;df h e h m loc df h mG x x z x V G x x z Vτ τ τ=  (24) 

and such that ( ),e hz x τ  appears to have spatial continuity over ( ),hx τ .  At this time, the 
identification of such reflection event surfaces is fundamentally subjective and 
interpretive. Let’s define ( )cx τ ranging from ( )xα τ to ( )xβ τ such that 
 

 ( )( ) ( )( ) ( )
2

, ,e c e c ex z x zφ τ τ τ τ τ= −  (25) 

and 
 ( )( ) ( ) ( ) ( )min, , ,e c cx x x xα βφ τ τ δλ τ τ τ⎡ ⎤< ∈ ⎢ ⎥⎣ ⎦ , (26) 

where 2  denotes the L2 norm, ( )ez τ  is the average over offset of ( ),e hz x τ  
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FIG. 1. Examples of CFP gathers where (a) shows the final stacked section migrated with 

mV V= ,  for the location indicated by the dashed line in (a), (b) shows ( ), ;i h mu x t V− , (c) is the 

forward modeled downgoing wavefield ( ), ;i h md x t V+ , and (d) shows a DTS panel, 

( ), , , ;df h o mG x z Vx τ , where 585rz = m, 0 1000x = m, and N=100.  

(c) 

(d) 

(a) 

(b) 
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 ( ) ( )( ),meane e hz z xτ τ= , (27) 

δ is a dimensionless number greater than zero and minλ  as defined by equation (16). 
Then there exists a focusing scalar crosscorrelation lag, fτ , that identifies the flattest part 

of ( )( ),e c fz x τ τ  and the focusing depth fz  such that  

 ( ) ( )( ) ( ) ( ) ( )max , ,c f f c f f fx x x x xα βτ τ τ τ τ⎡ ⎤= ∈ ⎣ ⎦  (28) 

and 
 ( )f e fz z τ= . (29) 

Thus fz  is the average depth of that part of ( ),e hz x τ  which is sufficiently flat. We say 

that mV  is correct to ε  periods and δ  wavelengths, and write this ,mV Vε δ= , at a position 

( )0 , fx z  if there exists a nonnegative, dimensionless number 0ε>  such that  

 maxf fτ ε< , (30) 

and  
 ,r fz zε δ= . (31) 

That is, the reflector and the focusing depths are equal. 

 ■ 

The differences between the CFP and CICA approaches are two fold:  

(1) For a particular reflection event, the CFP analysis starts with iz , that is, an initial 
guess of the depth of the reflector while in the CICA approach, the analysis is done 
around the observed focusing depth, fz , as defined by the flattest part of the event 

surface ( ),e hz x τ . 

(2) In the CFP approach, at iz , the offset-variant lag, ( ) ( ) ( )i h ui h di hx t x t xτ = − , 
depends on offset, hx , whereas in the CICA, at fz  the focusing crosscorrelation lag, 

( )( ) ( )( )- f uf c f df c ft x t xτ τ τ= , is offset independent. Moreover, the CFP approach is an 

iterative approach that terminates when ( ) max , ,i h hx f x x xα βτ ε ⎡ ⎤< ∀ ∈ ⎢ ⎥⎣ ⎦ , in which case the 
depth-specific delay function becomes offset independent.  

Consequently, the CICA approach should converge faster in approximating the true 
field than the CFP approach. However, the same updating procedure that is used in CFP 
will be used in CICA. So by splitting fτ  and applying half of it to the upgoing wavefield 



Migration velocity analysis 

 CREWES Research Report — Volume 17 (2005) 13 

and half to the downgoing wavefield, the true velocity can be approximated as we shall 
see later.   

Furthermore, slicing ( ), , , ;df h o mG x z Vx τ at different τ  values produces the depth 
focusing gathers which can be assessed for flatness as in RCA.  Also, the fact that energy 
focuses at a different depth than the true depth when mV Vε≠ is a borrowed concept from 
DFA. So the CICA is a combination of  the three previous methods. 

Constant velocity medium 

  In a constant velocity medium, when the velocity used for migration mV Vε= , the 
event is imaged at the reflector depth, rz z= . This also means that  

 ( )( ) ( )( )0 0 max, , , , , ,d h u h ht x x z t x x z f x x xα βε ⎡ ⎤− < ∈ ⎣ ⎦ . (32) 

It follows from the equation (32) and from the CICA hypothesis that fz zδ=  

and maxf fτ ε< .  There are numerous possible inversion schemes that could be used to 
invert for the true velocity from the updated traveltimes. In this report, we will use a 
simple inversion scheme in which the true velocity is estimated by fitting hyperbolae 
through the updated traveltimes.  The traveltimes of the extrapolated wavefields at rz can 
be calculated from 

 ( ) ( )
2

2 0 c
u c u c

m

x
t x t x

V
= = +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (33) 

and 

 ( ) ( )
2

2 0 c
d c d c

m

x
t x t x

V
= = +

⎛ ⎞
⎜ ⎟
⎝ ⎠

, (34) 

where ( ) ( ) ( )0 0 , 0cx x xα βτ τ τ= ∈ = =⎡ ⎤⎣ ⎦ (note the subscripts 0x and z have been dropped 

from the notations of dt and ut ) . Then the velocity can be solved for from either 
equation (33) or (34) since mV Vε= . However, when mV Vε≠  the event is imaged at a 
depth that does not equal the reflector depth, that is, rz z≠ and also 
( ) ( )0 0, , , ,d h u ht x x z t x x z≠ . From the CICA imaging hypothesis, we can find fτ and fz . 

Then the true velocity,V , can be approximated by the following steps: 

• Obtain an average estimate of the true velocity from the updated traveltime of the 
upgoing wavefield  
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( )

( )( ) ( )( )( ) 2 2

2

2 2
0c f

c f

x f f
u c u c

u

f f

x

t x t x

V

τ

τ

τ τ

α β

τ τ− − −

=
−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎛ ⎞ ⎛ ⎞⎜ ⎟
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

∑

. (35) 

• Obtain an average estimate of the true velocity from the updated traveltime of the 
downgoing wavefield  

 

( )

( )( ) ( )( )( ) 2 2

2

0
2 2

c f

c f

x f f
d c d c

d

f f

x

t x t x

V

τ

τ

τ τ

α β

τ τ+ − = +

=
−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑

. (36) 

• Then V can be found from                              

 
2

u dV V
V

+
= . (37) 

Figures 2.a and 2.b show CICs when using mV Vε= and mV Vε≠ , respectively. Note 
that the ( ), , , 0;df h o mG x z Vx τ =  has a flat event in Figure 2.a and a frown in Figure 2.b. 

This also means that for mV V= , 0f ετ =  and rz zδ= . Figure 2.d shows 

that ( ), , , ;df h o f mG x z Vx τ τ= has a flat event even though ( ), , , 0;df h o mG x z Vx τ =  does 
not. 

Next, we will use some numerical examples to show how the CICA hypothesis can be 
used to approximate the true velocity. Figure 3 shows composites of ( )( )u c ft x τ  and 

( )( )d c ft x τ of the upgoing and downgoing wavefields that are extrapolated to fz using 

mV for three cases: / 0.9091mV V = (Figure 3.a), / 0.8083mV V =  (Figure 3.b), and 
/ 0.7692mV V =  (Figure 3.c). Two observations can be drawn from this example: (1) in 

the three cases, fτ does not depend on offset and (2) even for a dipping reflector, the 
approximated velocity from the updated traveltimes has very small dip dependency.  

 Figure 4 sheds more light on the case / 0.8083mV V = by showing (a) the location of 
the analysis location on the stack section obtained with the true velocity, (b) traveltime 
from ray tracing, and (c) a composite of the upgoing wavefield, downgoing wavefield, 
and the travel time calculated using V . This example shows that the difference between 
the raytracing and hyperbola using V traveltimes is small. 
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FIG. 2. (a) Common image cube (CIC) where (a) is obtained with mV Vε= and (b) is obtained 

with mV V> . Part (c) shows slices of the true velocity cube at different lags and (d) shows slices 
of the wrong velocity cube at different lags. The arrow indicates the location of 

( ), , , ,df h o f f mG x z z Vx τ τ= = .  

 

 

(d) 

(c) 
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FIG. 3. Composite of the upgoing wavefield, downgoing wavefield, and ray tracing travel time with 
the true velocity where there is (a) 10% velocity error, (b) 20% velocity error, and (c) 30% velocity 
error. 

   

(b) 

(c) 

Downgoing wavefield 

Upgoing Wavefield 

(a) 
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FIG. 4. (a) Stack section with the true velocity, (b) ray tracing travel time with the true velocity, 
and (c) a composite of the upgoing and downgoing wavefields for the 20% velocity error. The 
extrapolation depth of gathers in (c) is the focusing depth. The yellow curve is obtained using the 
estimatedV . 

 

(a) 

(b) 

(c) 
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Vertical Velocity variations  
When the velocity varies with depth, the traveltime curve is only roughly a hyperbola. 

However, for small offsets, the root mean square (RMS) velocity is a good approximation 
to the average velocity (Yilmaz, 1987). Thus the same analogy that was used for the 
constant velocity case can be used here except that the velocity now is the RMS velocity 
instead of a constant.  

Figure 5 shows numerical examples of using mV Vδ= and mV Vδ≠ for migration. For 
simplicity, all these models have only one event at a depth of 1000m. For the case in 
which mV Vδ=  (Figure 5.a), the ( ), , , 0,df h o r mG x x x z z Vτ= = = has a flat event 

(Figures 5.c and 5.d). On the contrary, when mV Vδ≠  (Figure 6.a), the 

( ), , , 0,df h o r mG x x x z z Vτ= = = does not have a flat event (Figures 6.b and 6.c). 

However, based on the CICA hypothesis, there exist fτ and fz such that 

( ), , , ,df h o f f mG x x x z z Vτ τ= = = has a flat event. This common depth gather can be 

seen in Figure 6.c (indicated by an arrow). Figure 7 shows a composite of ( )u ht x and 

( )d ht x at fz , the travel time from ray tracing, and the travel time by using V (the 
approximated RMS velocity from the analysis). This shows that for this model, the travel 
time from a hyperbolae usingV was a good approximation to the true travel time obtained 
from ray tracing. 
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(a) 

(b) 

(c) 
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FIG. 5. Migration with mV Vδ= where (a) shows the velocity model, (b) shows the final stack 

section obtained from ( ), , , 0;
h

df h o r m
x

G x x x z z Vτ= = =∑ , (c) shows the 

( ), , , ;df h o mG x x x z Vτ= , and (d) shows slices of (c) for 1500ox = m. 

 

 

 

(d) 

(a) 
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FIG. 6. Migration with mV Vδ≠ where (a) shows the velocity model, (b) shows the final stack 

section obtained from ( ), , , 0;
h

df h o r m
x

G x x x z z Vτ= = =∑ , (c) shows the 

( ), , , ;df h o mG x x x z Vτ= , and (d) shows slices of (c) for 1500ox = . 

(b) 

(c) 

(d) 
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FIG. 7. Comparison of traveltimes of the ray-tracing and the hyperbola using the estimated 
velocity were (a) shows the ray-tracing at a lateral position, ox , and (b) shows the traveltimes of 
the ray-tracing (yellow) and the hyperbola using the approximated RMS velocity. The 
extrapolation depth for the upgoing and downgoing wavefields is the focusing depth. 

 

 
 
 
 
 
 
 
 
 
 

Upgoing Wavefield 

Downgoing wavefield

Travel time using the RMS velocity 
 
Travel time using Ray tracing 
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CONCLUSIONS 
The numerical examples for the models of constant velocity and velocity varying with 

depth show that the CICA imaging hypothesis can be used to get an estimate of the true 
velocity when the background velocity model does not approximate the true velocity 
field. This method combines various aspects of RCA, DFA, and CFP methods. Further, it 
offers more prestack information than the other methods.  

Even for a dipping reflector in a constant velocity medium, the current MVA methods 
might need a couple of iterations to get an accurate estimate of the true velocity. On the 
other hand, the CICA approach can achieve this on the first iteration. The CICA method 
is thus a promising technique for migration velocity analysis. The inversion formulas that 
are shown in this report might not yield accurate estimates of the velocities in the 
presence of complicated subsurface. In that case, global tomography should be used in 
instead. 
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