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Using a transition band in the weighted least-squares design of 
wavefield extrapolators 
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ABSTRACT 
Wavefield extrapolation methods are powerful in handling lateral velocity variations. 

However, the stability of the wavefield extrapolators is a major issue with these methods. 
The stability problem arises due to the presence of discontinuities at boundaries 
separating the wavelike and evanescent regions.  Least squares methods can be used to 
design wavefield extrapolators that practically remain stable in a recursive scheme by 
minimizing the squared error between the desired and actual transforms or “the 2L error”.  

Least squares methods can be classified into three major categories: unweighted least 
squares followed by a windowing function applied in space-frequency domain, weighted 
least squares using a smooth transition function connecting the wavefield and evanescent 
regions, and weighted least squares using a transition band (zero weight) for the transition 
region.  

Using a transition function like a spline in the least squares approximation has been 
shown to be capable of designing practical stable operators. This paper shows another 
extrapolation method that uses weighted least squares with a transition band to design a 
wavefield extrapolator. This approach changes the error criterion in a particular way in 
order to remove or reduce the overshoot. That can be done by removing a region from the 
optimization. That region is called a transition band. Preliminary results for the Marmousi 
dataset show that this method can be used to design practical stable operators. 

INTRODUCTION 
Extrapolation techniques for a laterally variable velocity field are usually formulated 

in the space-frequency domain (Berkhout, 1981; Holberg, 1988; Hale, 1991) as a dip-
limited approximation to the inverse Fourier transform of the phase shift operator. There 
are different ways to design spatial convolution operators for recursive wavefield 
extrapolation. Some methods are based on least squares, Taylor series, or both. Holberg 
(1988) used nonlinear least squares to design wavefield extrapolators. Hale (1991) 
introduced a method to calculate a stable explicit extrapolator based on the Taylor 
expansion of the exact constant-velocity, phase-shift operator in the frequency-
wavenumber domain and the use of novel basis functions. Soubaras (1996) used the 
Remes-exchange algorithm to design wavefield extrapolators that have equiripple 
behavior. Thorbecke et al. (2004) have introduced a weighted least squares method, 
which is not perfectly stable but has a controlled instability. Recently, Margrave et al. 
(2005) introduced another method for designing spatial operators called the FOCI 
method. “FOCI” is an acronym for forward operator and conjugate inverse. Most of these 
methods have controlled instability. This means that the designed extrapolator is not 
perfectly stable but is practically stable in a marching scheme. 
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A wavefield extrapolator can be designed by the regular least squares error design, and 
then a smooth windowing function can be applied to truncate the final operator in the 
space-frequency domain, but the result will no longer be optimal. Different weighted 
least squares methods can also be used in filter design. The most straightforward 
approach is simply to change the desired response so that there is no discontinuity and, 
therefore, the Gibbs phenomenon is removed or reduced and more weight is put on the 
region of interest (Parks and Burrus, 1987). This method of weighted least squares was 
used by Thorbecke et al. (2004) to design a wavefield extrapolator where a spline 
function was used for the transition region in the desired transform that connects the 
wavelike and the evanescent regions. As a result, the desired transform does not have 
discontinuities.   

In this report, we introduce another method for designing wavefield extrapolators that 
is also based on weighted least squares. This approach changes the error criterion in such 
a way as to remove or reduce the overshoot at the evanescent boundary. This is achieved 
by removing a region from the optimization. This region is called the transition band or 
“don’t care region” as it is called in the literature of finite impulse response (FIR) filters. 
Extending this approach to wavefield extrapolator design can reduce the overshoot 
dramatically. We will show comparisons of this approach with Thorbecke’s approach by 
looking at amplitude and phase spectra as well as some prestack and poststack examples. 

THEORY OF WAVEFIELD EXTRAPOLATION METHODS 

We begin with a 2D wavefield, ( )( )ˆ , ,xW k k x z∆ , which has already been Fourier 
transformed over the temporal and spatial coordinates. From the formula of the 
generalized phase shift plus interpolation (GPSPI) for 2D (Margrave and Ferguson, 1999) 

  

 ( ) ( ) ( )( )1 ˆˆ, , , , , ,
2

xik x
x x xx z z k z W k k x z e dkψ ω ψ ω

π

∞
−

−∞

+ ∆ = ∆∫ , (1) 

where 

 ( )( ) ( )2 2ˆ , , expx xW k k x z i z k x k⎛ ⎞∆ = ∆ −⎜ ⎟
⎝ ⎠

, (2) 

 ( ) ( )k x
v x

ω= , (3) 

ψ  is the pressure wavefield after taking its Fourier transformation over the temporal 
coordinate, "^ " means the forward Fourier transform over the transverse coordinate,Ŵ  is 
a pseudodifferential operator, z is depth, z∆ is the depth increment, x is the transverse 
coordinate, ω is the temporal frequency, and xk is the transverse wavenumber. 
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Equation (1) is the limiting form of the phase shift plus interpolation (PSPI) (Gazdag and 
Squazerro, 1984) where  

 ( ) ( ) '' 'ˆ , , , , xik x
xk z x z e dxψ ω ψ ω

∞

−∞

= ∫ . (4) 

 
Inserting equation (4) into equation (1) gives  

 ( ) ( )( ) ( ) '' '1 ˆ, , , , , ,
2

x xik x ik x
x xx z z W k k x z x z e dx e dkψ ω ψ ω

π

∞ ∞
−

−∞ −∞
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where 'x and x are the transverse coordinates at input and output, respectively. 
Rearranging the integrals in the above equation gives 

  

 ( ) ( ) ( )( ) ( )'' '1 ˆ, , , , , ,
2

xik x x
x xx z z x z W k k x z e dk dxψ ω ψ ω

π

∞ ∞ − −
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Rewriting equation (6) gives  

 ( ) ( ) ( )( )' ' ', , , , , ,x z z x z W x x k x z dxψ ω ψ ω
∞

−∞

+ ∆ = − ∆∫ . (7) 

From equation (7), the wavefield extrapolation can be done in the xω − domain as a 
spatial convolution where 

 ( )( ) ( )( ) ( )'' 1 ˆ, , , ,
2

xik x x
x xW x x k x z W k k x z e dk

π

∞ − −

−∞

− ∆ = ∆∫ . (8) 

The convolution in equation (7) becomes non-stationary when the velocity varies with x, 
and stationary when the velocity is constant.  By using a non-stationary convolution 
operator, ( )' , ,W x x x ω− , lateral velocity variations can be handled where for each output 

point, a different operator can be used.  

Addressing the stability problem 

The problem with ( )( )' , ,W x x k x z− ∆ is that it is not compactly supported (i.e. it is 

infinite in the spatial extent). The purpose of the different extrapolation methods is to find 
a stable compactly supported approximation to ( )( )' , ,W x x k x z− ∆ . Stability here means 

that after m repeated applications ofW , the approximated operator, in a recursive scheme 
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in a homogeneous medium, ˆ 1 ~ 1
m

mW mε ε≤ + + . When 0ε = then W is perfectly stable 

and technically non-stable otherwise. However, if 1mε , then W is practically stable. 
Note that in the wavelike region, the Fourier transform of the desired extrapolator 
yields ˆ 1W = , but gives ˆ 1W < in the evanescent region. The region ( ) xk x k≥  is called 

the wavelike region while the region ( ) xk x k< is called the evanescent region. 

LEAST SQUARES METHOD FOR EXTRAPOLATOR DESIGN 

Least squares can be used to design an accurate stable approximation to ( )ˆ ,xW k ω  
(Parks and Burrus, 1987). The least squares method minimizes the error, E, which is the 
sum of the squares of differences between the actual and desired Fourier transforms. This 
error can be defined as 

 ( ) ( ) ( )
2( 1) / 2

( 1) / 2

ˆˆ , ,
M

x x x
m M

E k W m k W m kω ω
−

=− −

= ϒ ∆ − ∆∑ , (9) 

where 

 ( ) ( )
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1 / 2

ˆ , , x
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n N
W m k x W n x eω ω

−
∆ ∆

=− −
∆ = ∆ ∆∑ , (10) 

 2
xk

M x
π∆ =
∆

, (11) 

( )xkϒ is a non-negative error weighting function, M is the number of samples of the 
Fourier transform, and N is the number of filter coefficients (Parks and Burrus, 1987; 
Thorbecke et. al., 2004). The desired extrapolation operatorŴ  is symmetric with respect 
to xk , which implies that the complex extrapolation filter coefficients W should be even. 
This also means that  

 ( ) ( )n nW x W x−= . (12) 

This even-symmetry requirement suggests that N should be odd, with the coefficient 
index, n, bounded by (Hale, 1991)   

 ( ) ( )1 / 2 1 / 2N n N− − ≤ ≤ − . (13) 

To obtain a least squares solution, M N> , so that there are more equations than 
unknowns. Equation (10) can be also expressed in matrix notation as in  

 Ŵ FW=  (14) 
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where F is the Fourier transformation matrix. A least squares solution that minimizes the 
error function can be given as 

 
1 ˆH HW F F F W

−
⎡ ⎤= ϒ ϒ⎣ ⎦ , (15) 

where the superscript H denotes the complex-conjugate transpose. There are three 
methods for obtaining a least squares solution to the above approximation (Parks and 
Burrurs, 1987; Selesnick et. al., 1996) 

i) Unweighted least squares. 

ii) Weighted least squares with the use of a transition function to connect the wavelike 
and evanescent regions. 

iii) Weighted least squares with the use of zero-weighted transition band placed between 
the wavelike and evanescent regions. 

Unweighted least squares 

Unweighted least squares can be obtained using  

 
1 ˆH HW F F F W

−
⎡ ⎤= ϒ ϒ⎣ ⎦ , (16) 

with the diagonal entries of ϒ being ones. The equivalence (but not in a matrix notation) 
of the above equation is obtained by truncating the infinitely long operator with a boxcar 
as in 

 ( )( ) ( ) ( )( )' ' ', , , ,W x x k x z x x W x x k x z− ∆ = Ω − − ∆ , (17) 

where ( )'x xΩ −  is a symmetric, compactly supported, boxcar window localized 

near 'x x= . This truncation leads to an oscillatory behavior that is more pronounced near 
the discontinuities. This behavior is known as Gibbs phenomenon and results from 
approximating a discontinuity in the desired transform and minimizing the squared error 
(Parks and Burrus, 1987).   

Figure 1.a shows the amplitude and phase spectra of the desired transform. Figure 1.b 
shows the inverse Fourier transform of Ŵ , which is very long. Figure 1.c shows the 
operators after truncation with two windows: boxcar and Hanning windows. The result of 
truncating ( )( )ˆ , ,xW k k x z∆  with a boxcar window is that the amplitude spectrum of the 
Fourier transform of the truncated operator is unstable since the amplitude exceeds unity. 
On the other hand, when ( )'x xΩ − is a Hanning window, then the amplitude spectrum of 

the Fourier transform of ( )( )' , ,W x x k x z− ∆  decays for some wavenumbers (Figure 1.e). 
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This example shows that simple truncation with window functions is suboptimal and 
most of the time leads to unstable operators. 

Weighted least squares using a transition function 
Thorbecke et al. (2004) use the weighted least squares with a transition function. 

Instead of using the desired transform,Ŵ , which has discontinuities at the evanescent 
boundaries, they use a model-based function that approximatesŴ only in the wavelike 
region. The amplitude and phase of the model-based function, ( )ˆ , , ,s xW k z kαω ∆ , are 
defined as follows 

  

 ( )
1.0         

ˆ , , ,     

0.0         

x

s x x

x

k k

W k z k spline k k

k
x

α

α αω
π

⎧
⎪ ≤
⎪

∆ = >⎨
⎪
⎪ =

∆⎩

 (18) 

and 

  

 ( )( )
       

ˆarg , , ,         

0.0             =
x

z x

s x x

x

i k z k k

W k z k spline k k

k

α

α αω
π

⎧
⎪ ∆ ∆ ≤
⎪

∆ = >⎨
⎪
⎪

∆⎩

, (19) 

where ( )sink kα α= and α is the maximum propagation angle. In the literature of filter 
design, a transition function is usually used only to connect the passband (wavelike) and 
stopband (evanescent) regions. However, in equations (18) and (19), the cubic spline 
functions go from kα to the Nyquist wavenumber. Since the wavefield operator is applied 
recursively, the amplitudes in the evanescent region will decay after a number of 
applications as long as they are less than unity. This method, which we will call the 
weighted least squares using a transition function, (WLSTF), for designing a wavefield 
extrapolator can be obtained using  

  

 
1 ˆH H

sW F F F W
−

⎡ ⎤= ϒ ϒ⎣ ⎦ , (20) 

where  
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FIG. 1. Truncation effects where (a) shows the desired amplitude and phase spectra, (b) shows 
the inverse Fourier transform of the desired transform, which is very long, (c) shows two 
extrapolators that are truncated with boxcar and Hanning windows, (d) shows the amplitude 
spectrum of the Fourier transform of the truncated extrapolator with a boxcar window raised to a 
power of 50, and (e) shows the amplitude spectrum of the Fourier transform of the truncated 
extrapolator with a Hanning window. The parameters for these plots are vertical and spatial 
samplings of 10 m, v=2000 m/s, and frequency of 40 Hz. 
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 mn x mnwm k δϒ = ∆ , (21) 

and w is a box-shaped weighting function with a weight of one in the wavelike region and 
a small dimensionless number (say 510− ) in the evanescent region. 

Weighted least squares using a transition band 
One of most effective modifications of the least squares (LS) error design methods is 

to change the band of wavenumbers over which the minimization is carried out (Parks 
and Burrus, 1987). The band of wavenumbers for the transition region is simply removed 
from the error definition, and the region is called the transition band or “don’t care” band. 
The error becomes  

 S PE E E= + , (22) 

where    

 ( ) ( ) ( )
2

ˆˆ , ,
p

P x x x
m p

E k W m k W m kω ω
=−

= ϒ ∆ − ∆∑ , (23)  
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( ) ( ) ( )

2

( 1) / 2

2( 1) / 2

ˆˆ , ,

ˆˆ           , ,

s

S x x x
m M

M

x x x
m s

E k W m k W m k

k W m k W m k

ω ω

ω ω

−

=− −

−

=

= ϒ ∆ − ∆ +

ϒ ∆ − ∆

∑

∑
, (24) 

xp k kα∆ = , 2xs k k kα∆ = − , ( )sink kα α= , /k vω= , and the weight function, ( )xkϒ is 
defined as  

 ( )
1           

0             2       

           2   

x

x x

x

k k

k k k k k

k k k
x

α

α α

α
πε

⎧
⎪ ≤
⎪

ϒ = < < −⎨
⎪
⎪ − < <

∆⎩

, (25) 

such that  

 1ε . (26) 

In this method of weighted least squares using a transition band, WLSTB, there is no 
constraint placed on ( )ˆ ,xW k ω in the transition region. Further, there will be less squared 
error because the error of the transition region is not included (equation (21)).  The final 
extrapolator can be obtained using 

 
1 ˆH HW F F F W

−
⎡ ⎤= ϒ ϒ⎣ ⎦ . (27) 
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DISCUSSION 
Using a transition band in the weighted least squares filter design can lead to a more 

stable design than using a transition function for the transition region. To illustrate the 
difference between them, a comparison of the amplitude spectra of the weighed least 
squares with a transition function (WLSTF) and weighted least squares with a transition 
band (WLSTB) is shown in Figure 2. The same parameters that were used by Thorbecke 
et al. (2004) are used here to reproduce the same figure (Figure 2.d in Thorbecke et al., 
2004) for comparison. The WLSTB shows a better approximation to the desired 
transform than the WLSTF extrapolator. Further, the oscillations of the WLSTB 
extrapolator, which is a potential source for instability, are less than the WLSTF 
extrapolator. On the other hand, the phases of WLSTF and WLSTB extrapolators show 
that both have a good phase control and they are similar to the phase of the desired 
transform (Figure 3). 

 

 

FIG. 2. Amplitude spectra of the exact, WLSTF, and WLSTB extrapolators where 10x∆ = m, 
2z∆ = m, 50f = Hz, 2000v = m/s, and o70α = . 
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FIG. 3. Phase spectra of the exact, WLSTF, and WLSTB extrapolators where 10x∆ = m, 
2z∆ = m, 50f = Hz, 2000v = m/s, and o70α = . 

 

Impulse responses of Phase shift, WLSTF, and WLSTB operators 

The impulse responses of the phase shift operator, and the WLSTF and WLSTB 
extrapolators are shown in Figure 4. The parameters are 10x z∆ = ∆ = m, 0.004t∆ = ms, 
v=2000 m/s, o70α = , and N=25. The impulse responses of the WLSTF and WLSTB are 
very similar and there is no noticeable difference between them. This shows that the 
WLSTB results are comparable with the WLSTF. 

      Prestack depth migration of the Marmousi dataset using the WLSTF and 
WLSTB extrapolators 

The 2-D acoustic Marmousi dataset was created at the Instut Francais du Petrole (IFP) 
(Bourgeois et al., 1991). With the presence of complex reflectors, steep dips and strong 
velocity gradients, it is widely recognized as an ideal synthetic dataset for testing 
migration algorithms. The dataset consists of 240 individual shot records of 96 traces 
each in a marine towed streamer configuration. The source and receiver intervals are 25 
m and the highest coherent frequencies in the data are about 50 Hz. Prior to migration, we 
applied a wavelet shaping filter designed to whiten the signal spectrum and to remove an 
approximately 60 ms delay due to ghosting and water-bottom multiples. We also 
interpolated each shot to a receiver spacing of 8.3333 m.  

Figure 5.a shows an approximation to the reflectivity of Marmousi, Figure 5.b shows 
the prestack result using WLSTF, and Figure 5.c shows the result obtained using the 
WLSTB. The two results are comparable in terms of their abilities to handle such a 
complicated subsurface. The parameters are 8.3333x z∆ = ∆ = m, and N=31. Figure 6 
shows a detailed comparison of the shallow central sections of Figures 5.b and 5.c. The 
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imaging of the dipping events in the WLSTB is superior to that of the WLSTF. However, 
at the target level, there is no noticeable difference between them (Figure 7). 

   

        

  

FIG. 4. Impulse responses of (a) the phase shift operator, (b) the WLSTF extrapolator, and (c) the 
WLSTB extrapolator using 10x z∆ = ∆ = m, 0.004t∆ = ms, v=2000m/s, o70α = , and N=25. 

(c) 

(b) 

(a) 
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FIG. 5. Prestack depth migration results where (a) is the Marmousi velocity model, (b) is the 
WLSTF result, and (c) is the WLSTB result. 
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(c) 
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FIG. 6. Zoomed sections of the shallow central parts of Figures 5.b and 5.c where (a) is the 
WLSTF result and (b) is the WLSTB result. 
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FIG. 7. Zoomed sections of the deep parts of Figures 5.b and 5.c where (a) is the WLSTF result 
and (b) is the WLSTB result. 
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CONCLUSIONS 
The desired transform of the extrapolator has discontinuities at the evanescent 

boundaries. Approximating discontinuities leads to Gibbs phenomenon or oscillatory 
behavior that is more pronounced near the discontinuities. Using weighted least squares 
along with changing the desired transform so that it has a smooth function can remove or 
reduce the overshoot. In the WLSTF design, the model based extrapolator matches the 
exact operator in the wavelike region and it is a spline function that goes smoothly to zero 
at the Nyquist wavenumber. Further, more weight is put on the wavefield region than the 
evanescent region to increase stability. This method can be used to design practical 
extrapolators. 

In this report, we have introduced another method that is also based on weighted least 
squares but differs from WLSTF in that the band of wavenumbers belonging to the 
transition region is simply removed from the error definition. After removing these 
wavenumbers, this region is called the transition band so that this is referred to as the 
weighted least squares transition band (WLSTB) method. The preliminary results of 
WLSTB were comparable with those of WLSTF, which shows that the WLSTB approach 
can be used in extrapolator filter design. 
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