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A comparison of anisotropic phase-shift-plus-interpolation and 
reverse-time depth migration methods for tilted TI media 

Xiang Du, John C. Bancroft and Larry R. Lines 

ABSTRACT 
Seismic anisotropy in dipping shale layers causes imaging and positioning problems 

for underlying structures. Two 2D anisotropic depth migration algorithms, anisotropic 
phase-shift-plus-interpolation (APSPI) and anisotropic reverse-time (ART), are presented 
for tilted transversely isotropic media (TTI). These two algorithms inherit the accuracy of 
wavefield extrapolation migration methods. Based on the analytical solution of the 
frequency-dispersion equation, APSPI algorithms can handle an arbitrary distribution of 
velocities and anisotropic parameters. We also derive the P-wave and SV-wave equations 
for tilted TI media using the frequency-dispersion equation. 

APSPI belongs to the downward continuation method that uses one-way wave 
equation migration methods, while ART is a full wave equation method. We focus our 
research on the differences between accuracy and efficiency. In addition, we evaluate the 
difference between isotropic and anisotropic migrations. Examples demonstrate that 
APSPI and ART have excellent performance for arbitrary velocity and anisotropic 
parameters media. However ART does not suffer from the dip limitation of one-way 
downward continuation algorithms. 

INTRODUCTION 
Velocity measurements in the laboratory (Thomsen, 1986) and field studies (Crampin 

et. al, 1984) have shown that many sedimentary rocks exhibit anisotropy. Thick 
anisotropic sequences of dipping sandstones and shales often overlie the reservoir in fold 
and thrust belts, such as the Canadian Foothills. In these cases, such an assumption, when 
anisotropy is negligible, may result in imaging problems and mispositioning errors, as 
studied by Isaac and Lawton (1999). Several authors have recently developed migration 
methods for anisotropic media. Akhalifah (1995) used a Gaussian beam algorithm for 
poststack migration in 2D transversely isotropic media with a vertical axis of symmetry 
(VTI). Le Rousseau (1997) and Ferguson and Margrave (1998) extended the phase-shift-
plus-interpolation and non-stationary phase shift method to TTI media. Ristow (1999) 
presented an implicit 2D depth migration scheme for VTI media based on the coefficients 
of finite difference (FD) equation. Han (2000) proposed two prestack converted-wave 
migration algorithms for VTI media, including anisotropic PSPI by analytically solving 

zk  with the Christoffel equation and anisotropic FD algorithm. Zhang et al. (2001) 
proposed shot spatial convolution operators to extrapolate the wavefields recursively in 
the space-frequency domain for qP and qSV-wave in TTI media. Zhang et al. (2002) 
presented a finite difference (FD) scheme for the computation of first arrival traveltime 
on regular grids for transversely isotropic (TI) media. Kumar et al. (2004) carried out 2D 
Kirchhoff migration based on their traveltime algorithms. Du et al. (2005) introduced the 
anisotropic reverse-time migration for TTI media.  
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In this paper, we chose two anisotropic migration methods for a comparison, including 
anisotropic PSPI and anisotropic reverse-time migration. The former is based on one-way 
downward continue migration methods, while the latter is a full-wave equation migration 
method. Rather than use an approximated solution of zk , such as table-driven 
interpolation (Le Rousseau, 1997) and an interpolation polynomial (Ferguson and 
Margrave, 1998), we solve zk  analytically from the quartic dispersion equation (see 
appendix). Starting from a frequency dispersion equation as well, we applied our P-wave 
equation and SV-wave equation for tilted TI media (Du et al., 2005). A comparison 
between anisotropic PSPI and ART demonstrates individual performance with respect to 
accuracy and efficiency. In addition, the extra computer run-time is counted for each 
migration algorithm when using anisotropic parameters. One numerical and two physical 
examples demonstrate that the two anisotropic migration methods improve the imaging 
accuracy and energy focus 

THEORY 

Anisotropic Phase-shift-plus interpolation migration (APSPI) 
Since anisotropic Phase shift plus interpolation migration is derived from PSPI, we 

first review the basic PSPI approach. Given a homogeneous velocity field in the 
frequency-wavenumber domain, the 2D acoustic wave equation is given by 
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where P is the pressure field, z is the depth,  ω  is the circular frequency, and v is velocity 
and xk  is the wavenumber in the lateral direction. Taking the Fourier transform in the z 
direction gives us the frequency dispersion equation 
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and its corresponding one-way wave equation 
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here the ±  signs correspond to downgoing and upgoing wavefields respectively. 
Assuming that v(z)  is constant over the depth interval dz, we can get the analytic 
solutions for the one-way wave equation: 
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Thus the wavefield in depth involves a simple phase shift in the frequency-wavenumber 
domain. The above theory is actually provided by Gazdag migration (Gazdag, 1978). The 
advantage of this method is its stability with no special requirement for the grid spacing 
and its accuracy up to 900 

 degree dips. When the velocity field varies laterally, the phase 
shift method fails, for it assumes that the velocities vary only with depth z. Thus, Gazdag 
and Sguazzero (1984) advanced the Phase-shift-plus-interpolation method that used 
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several reference velocities to account for the lateral velocity variation. At each step, they 
use several reference velocities to account for the lateral velocity variation. The true 
wavefield is obtained by linearly interpolating the reference wavefield using the 
relationship between local velocity and reference velocities. 

When the velocity field varies not only with lateral direction but also with the phase 
angle in anisotropic media, zk  is a function of vertical velocities and anisotropic 
parameters. Similar to the isotropic case, we have the anisotropic dispersion relationship, 

 2
2

2

)( xz k
v

k −
θ

ω±= , (5) 

where ω  is the frequency, )(θv  is the angle-dependent velocity, θ  is the phase angle 
with the symmetry axis. For all the phase-shift-based migration algorithms, the key is to 
relate zk  to xk  with known xk . In the isotropic case, ω  and v are constant, so zk  can be 
readily computed from xk , ω  and v using the isotropic frequency dispersion equation. In 
anisotropic media, the angle-dependence of velocity makes the computation more 
complicated. 

According to Tsvankin (1996), the phase velocity )(θv can be described in terms of ,ε  
δ , and the vertical P- and SV-wave velocity Vp0 and Vs0 as 

 

ff
f

f
V

V

p

θδ−ε−θε+±

−θε+=θ

2sin)(2)sin21(
2

             

2
sin1)(

2
2

2

2
2
0

2

. (6) 

When we rotate the symmetry axis from vertical to a tilt angleφ , the phase velocity in the 
direction measured from the vertical direction is: 
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where the + and – signs are for P-and SV-waves respectively, and 2
0

2
01
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are Thomsen parameters (Thomsen, 1986), which are defined as: 
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where ijc  are elastic moduli. With the weak-anisotropic assumption, the expression for 
the anisotropic phase velocity can be simplified by expanding it to first order in the small 
parameters ε  and δ : 
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. Using the Equation (6) as the starting point, Le Rousseau (1997) 

developed an anisotropic PSPI algorithm for migration wherein he precomputes a table of 
)(θzk and )(θxk while considering the angle dependence of velocity for anisotropic 

parameters, locates or interpolates a given input xk in the table, and finds the 
corresponding zk , the accuracy of this table-driven algorithm is directly related to the 
size of the table; the finer the increment in phase angle θ , the better the result. With the 
larger table, it is obvious that searching is time-consuming. Ferguson and Margrave 
(1998) suggested using an interpolating polynomial to get approximated solutions of zk . 
They first estimated an empirical polynomial relationship between phase angle θ  and 
horizontal slowness p by a series of numerical experiments, and then used the θ  
expression to calculation vertical slowness to get zk . It appears, however, that 
experiments are cumbersome with difference anisotropic parameters. A difficulty 
presents itself when the axis of symmetry φ  of a TI medium is non-zero. The horizontal 
slowness versus phase angle for dipping TI medium shows that some values of p 
correspond to two values of θ , so we have to turn to other methods for a remedy. 

In fact, we can solve zk  analytically from the quartic dispersion equation (see 
Appendix) such as 

 00
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where ia  ( 3 ,2 ,1 ,0=i ) is related to xk , ε , δ , 0pv and φ .Considering that we are 
comparing with anisotropic reverse-time migration that uses the weak anisotropy 
approximation, we get the analytical solution for the P wave. Two roots out of four of the 
quartic dispersion equation are chosen, corresponding to the down- and upgoing-qP 
waves, respectively. Figure 1 shows a solution of the quartic dispersion equation for TI 
medium with a tilted angle of 0, 30, 60, 90 degrees. The analytical solutions are also 
shown in this figure with cyan color. The numerical solutions exactly match them. The 
performance of the phase shift operator can best be exemplified through a study of 
migration impulse responses. Since existing laboratory and field data indicate that the 
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parameter ε  is predominantly positive and most measurements made for transversely 
isotropic formations at seismic frequencies indicate that δ>ε (Thomsen, 1986), we take 

24.0=ε  and 1.0=δ . Figure 2 illustrates the impulse response of P wave propagation 
modes with a tilt angle of 0, 30, 60, 90 degrees. The arrows represent the symmetry axis 
that has a good correspondence with each tilted angle. Furthermore, the phase shift 
method exhibits excellent performance in dipping angles up to 90 degrees that is better 
than the optimum explicit operators by Zhang et al. (2001).  

As in the isotropic PSPI algorithm, several sets of reference parameters must be used 
for the migration. Ideally, reference wavefields would be generated for each set of 
reference parameters. Considering that we used four Thomsen parameters 0pv , ε , δ  and 
φ , we would require 625 different sets of reference parameters. To make computation 
affordable, it is assumed that parameters 0pv , ε  and δ  have correlated lateral variation. 
Since tilt angle φ  has a big effect on the wavefront dip direction, we take full account of 
the tilt angle. For anisotropic PSPI, balancing the computation cost and the number of 
reference parameters remains an unresolved issue. The same issue of treating independent 
lateral variations in all four Thomsen parameters exists for a lot of anisotropic algorithms 
such as a phase-shift operator, and for explicit downward-continuation methods 
(Uzcategui, 1994). 

Anisotropic reverse-time migration (ART) 

Since Du et al., (2005) presented anisotropic reverse-time migration, we do not present 
much detailed analysis here and just review it quickly. In the same way, we start from 
VTI phase-velocity equation (Tsvankin, 1996) written as 
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Under the assumption of weak anisotropy, we transform the phase-velocity equation (12). 
Expanding the radical in Taylor Series and dropping terms quadratic in the anisotropies ε  
and δ , we can obtain the P-wave and SV-wave phase velocity formula as: 
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By rotating the symmetry axis from vertical to a tilt angle φ , we can get the phase 
velocity for P and SV waves in the direction measured from the vertical direction. The P 
and SV phase velocity measured from a horizontal plane are shown as follows: 
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For plane waves traveling in the vertical (x, z)-plane, the phase angle is given by 

 
ω
φθ=θ xkv ),(sin ,   

ω
φθ=θ zkv ),(cos  (17) 

When we multiply Equation (15) and (16) with the wavefields in the Fourier domain, and 

apply an inverse Fourier transform with ( xk i
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obtain the P-wave equation and SV-wave equation in tilted transversely isotropic media. 
The P wave equation for tilted transverse isotropic media is 
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The SV wave equation for tilted transverse isotropic media is 
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The P- and SV-wave equations (Equation 18 and 19) can also be written in the time-
space domain. However, space and time are coupled in the terms 

224 / txu ∂∂∂ and 224 / tzu ∂∂∂ , and these cause computational difficulty in finite difference 
schemes, whereas the equations are easily solved in the time-wavenumber domain. 
Therefore the pseudospectral method is selected for reverse-time migration (RTM). The 
pseudospectral method (Fornberg, 1987) is a higher accuracy method that needs fewer 
grid points per wavelength to obtain any desired accuracy. It successfully solves the 
frequency dispersion problem which results from a limited difference operator in reverse-
time migration. In the numerical computation, we apply the phase shift in the 
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wavenumber domain, change the velocity and anisotropic parameters ( ε , δ  andφ ) in the 
spatial domain, and transform to the wavenumber domain again in time steps. The 
algorithm is capable of being adapted to arbitrary heterogeneous velocities and 
parameters. The algorithm procedure is shown in Figure 3. 

Relationship between the APSPI and ART 
As stated in the introduction about anisotropic phase-shift-plus-interpolation and 

anisotropic reverse-time theory, we can find two isotropic methods which can be 
successfully extended to be used in tilted transversely isotropic media. Anisotropic PSPI 
performs computations in the wavenumber and frequency domain that result in 
interpolating the wavefield in the spatial domain to accommodate the velocity variation 
along the lateral direction.  In contrast to algorithms using approximation of the one-way 
wave equation, such as explicit operators and implicit operators in x- ω  domain, APSPI 
maintains high accuracy for dip angle up to and beyond 90 degrees and has less 
numerical noise caused by approximation as well. Furthermore, it is straightforward to 
extend from 2D to 3D, involving only an additional Fourier transform in the y-direction. 
Anisotropic reverse-time migration preserves the full dip angle and overturned reflection 
imaging ability in that it is two-way wave equation solution. In addition, it automatically 
adapts to variation of velocities and anisotropic parameters in the spatial domain. In fact, 
the step-by-step reverse calculation also makes the algorithm expensive. From the 
comparison, APSPI makes a good balance between accuracy and efficiency while ART 
justifies its accuracy especially in complex media. 

EXAMPLES 

To show the difference between the two migration methods, we chose three examples 
for analysis, including one numerical model and two physical models. The numerical 
variable velocity model is designed to exhibit the accurate dip angle imaging ability 
difference between APSPI and ART migration in TTI media. Two scaled physical 
models, an isotropic reef with a TTI overburden and a TTI thrust sheet in an isotropic 
background, were constructed by the University of Calgary Foothills Research Project 
(FRP). These models were used to investigate the magnitude of the imaging error 
incurred by the use of isotropic processing code when there is seismic velocity anisotropy 
presented in the dipping overburden. The transducer dimensions of the modeling 
equipment prevented the acquisition of data of true zero offset. However, we can assume 
that if the near-offset is close enough to zero, it will be consider zero-offset. Migrations 
of the collected seismic data exhibit the accurate image positioning of two anisotropic 
migrations while isotropic migration gives considerable errors in physical position and 
energy focus. Our migration analysis is done in a PC machine with 2.4GHz CPU and 
512MB of RAM  

Anisotropic imaging reflectors with different angles for variable velocity model 

A variable velocity model that consists of six dipping reflectors (0, 15, 30, 45, 60, 75, 
90 degrees) is shown in Figure 4. The medium has anisotropic parameters 2.0=ε , 

1.0=δ and the tilt angle is 0. The vertical velocity of the model is v(x, z) =1500+0.3z 
+0.1x (m/s). Figure 5 shows a synthetic zero offset section for this model. It was 
generated by a SU (Seismic Unix software available from Center for Wave Phenomena, 
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Colorado School of Mines) anisotropic modeling code that treats transversely isotropic 
media. Figure 6 is the isotropic migration result obtained from isotropic reverse-time 
migration method of 8th order accuracy. Figure 7 corresponds to isotropic PSPI. There is 
hardly any difference between the two isotropic migration algorithms and the results are 
undermigrated without considering anisotropic situation. Correct imaging results are 
shown in Figure 8 and 9 by anisotropic PSPI and anisotropic RT migration algorithms 
with exact anisotropic parameters, respectively. In addition, the energy for the reflector 
with 900 dipping angle is weak for APSPI migration result while the one for ART is 
obvious. The energy for reflectors with 750 and 600 by ART are stronger than that by 
APSPI. So ART shows excellent ability in dipping angle imaging. It should be mentioned 
that APSPI cost 5 minutes to finish the computation while ART used 8 minutes. It seems 
that APSPI makes a balance between the accuracy and efficiency. The overall 
comparison of computational cost is shown in Figure 10. It costs 4 minutes and 5 minutes 
for isotropic PSPI and RT. When we compare the computer run-time between isotropic 
and anisotropic cases for each of the two algorithms, since homogenous anisotropic 
parameters case is designed, the computation increment doesn’t change more.  

 

Depth migration for isotropic reef with a TTI overburden 
Seismic data from an anisotropic physical model described by Isaac and Lawton 

(1999) were used to test the migration algorithm. The cross-section of this model is 
shown in Figure 11; it includes a TTI overburden layer, 1500m thick, with the axis of 
symmetry dipping at 450. The layer has parameters Vp0 = 2950m/s, 0.241ε = , and 

0.100δ = . An isotropic layer that contains a simulated reef edge with Vp0 = 2740m/s 
underlies this anisotropic overburden. Figure 12 shows a zero-offset seismic section with 
the surface wave muted. To make the first interface of the model migrate to the correct 
position in the isotropic migration, we consider that the dipping angle is 450 and adopt 
V45 for the upper layer. Migration results of the zero-offset section by isotropic PSPI and 
RT migration yield an image of the reef edge which is displaced by about 350m to the 
left of its true position (Figure 13 and Figure 15). Migration by anisotropic RT and 
anisotropic PSPI algorithms correctly positions the edge of reef, as shown in Figure 14 
and 16.  In addition, we can find that there is some reflection alias for RT migration from 
Figure 14 and Figure 16 because of velocity interfaces, which can be removed by 
smoothing the velocity model.  From the two anisotropic migration results, there is very 
little difference in the migration quality. As for the efficiency, isotropic PSPI, isotropic 
reverse-time migration, isotropic PSPI and anisotropic PSPI cost 3 minutes, 5 minutes, 7 
minutes, and 20 minutes. Since the tilt angle is 450, it appears that it increases the 
required computation more for anisotropic PSPI than for isotropic PSPI. As for ART 
migration, the computer run-time is more expensive than APSPI, which can be found 
from Figure 17. 

Migration for TTI thrust sheet in an isotropic background 
The second physical model is that of a flat reflector overlain by a TI thrust sheet 

embedded in an isotropic background. The model is shown in Figure 18. The thrust sheet 
is composed of four blocks in the model; each with a unique axis of symmetry. They 
have parameters of Vp0 = 2925m/s, 224.0=ε  and 100.0=δ . The isotropic background 
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has a flat basement with Vp0 = 2740m/s. The zero-offset seismic section is given in 
Figure 19. Figures 20 and 22 are isotropic and anisotropic PSPI migration results. Figures 
21 and 23 correspond to isotropic and anisotropic reverse-time migration results. The 
blue lines in the four figures denote the true location of the thrust sheet interfaces. With 
the velocity Vp0 = 2925m/s for the thrust sheet, the isotropic PSPI and RT migration 
results (Figure 19 and Figure 21) produce a partially flat basement, whereas the basement 
beneath thrust sheets exhibits substantial pull up and the energy cannot be focused. The 
interface between the block with 60 degrees tilted angle and the block with 51 degrees 
tilted angle is incorrectly positioned since the black solid line does not match with the 
migration event. Migration results by anisotropic PSPI and RT migration (Figure 20 and 
Figure 22) show more accurate positioning of the reflectors and have nearly flattened the 
basement reflection, although the reflection event is not continuous. The interface 
reflection interference of the base reflector between 2000m and 3300m is believed to 
indicate a shadow zone caused by the high-velocity thrust sheet overlying slower 
material. The shadow zone is a result of the zero-offset geometry of the recording. In fact, 
migration of the prestack data by source-gather migration will fill in the shadow zone due 
to the multiplicity of ray paths afforded by the prestack geometry, which can be seen 
from Figure 24, created by anisotropic prestack PSPI migration. Due to a more complex 
physical model, the anisotropic algorithms greatly increase the computation consumption. 
Isotropic PSPI uses 4 minutes whereas anisotropic PSPI almost takes 15 minutes. Similar 
to PSPI methods, isotropic reverse-time migration employs 6 minutes, but anisotropic 
reverse-time migration uses almost 30 minutes. The efficiency comparisons are shown in 
Figure 25. However, when we compared the anisotropic PSPI and RT results, there is no 
obvious difference between them due to the fact that we only deal with the poststack 
seismic data. Some noise exists in the APSPI migration result. With the anisotropic 
prestack reverse-time migration, the dipping reflector should be clearly imaged, which 
will be confirmed in the future. 

CONCLUSIONS 
From the above analysis, it is obvious that anisotropy has a large influence on the 

accuracy of migrated images. Use of a migration algorithm that takes anisotropy into 
account, with correct velocity information, can substantially improve images when 
anisotropy is present. In this paper, the anisotropic PSPI algorithm theory for TTI media 
is introduced and a new way to get an analytical solution for vertical wavenumber is 
presented. Anisotropic reverse-time migration theory is also reviewed here, and at the 
same time we present an appropriate P- and S-wave equation to use in place of the 
isotropic acoustic wave equation employed in isotropic reverse-time migration. The 
pseudo-spectral method is easily used to solve these equations implementing reverse-time 
migration. With numerical and physical examples, we give an overall analysis for two 
algorithms not only between anisotropic algorithms, but also between individual isotropic 
migration and anisotropic migration with the aspect to both accuracy and efficiency. 
From the result comparison, we find anisotropic PSPI and anisotropic RT are both 
encouraging and promising. The anisotropic RT migration algorithm shows excellent 
capability in dip angle imaging, whereas anisotropic PSPI keeps a good balance between 
accuracy and efficiency. Anisotropic PSPI uses almost twice as much computation as 
isotropic PSPI, while the computational cost of anisotropic RT is nearly five times as 
large as that of isotropic RT. However, with the rapid development of computer 



Du, Bancroft, and Lines 

10 CREWES Research Report — Volume 17 (2005)  

hardware, all kinds of anisotropic depth migration algorithms will be widely used in 
seismic imaging. 

ACKNOWLEDGEMENTS 
We express our thanks to Dr Don Lawton who gave us many suggestions and Dr. 

Helen Isaac who prepared the model data; and thanks to CREWES for financial support 
and the SEG for scholarships. We appreciate Center for Wave Phenomena (CWP), 
Colorado School of Mines for use of free Seismic Unix software. 

 

        
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

         
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

  

        -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

          -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 

FIG. 1. Dispersion relationship of P-wave for a TI medium. (a), (b), (c) and (d) correspond to the 
result of a tilt angle of 0, 30, 60, and 90 degrees. The black solid lines denote the real part of kz, 
the blue dashed lines are imaginary part of kz and the cyan solid lines represent the analytical 
solutions for real part of kz. 
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FIG. 2. P- wave impulse response. (a), (b),(c) and (d) correspond to the result of a tilt angle of 0, 
30, 60, and 90 degrees as indicated by the arrows. 

 

FIG. 3. Computation diagram of anisotropic reverse-time scheme corresponding to equation (18) 
and (19). 
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FIG. 4. Variable velocity model with different dipping reflectors. 

 

FIG. 5. Synthetic zero-offset seismogram obtained using an SU code from Center for Wave 
Phenomena (CWP) for the structural model of Figure 4 for TI media. 

 

FIG. 6. Isotropic PSPI migration result. 
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FIG. 7. Isotropic RT migration result. 

 

FIG. 8. Anisotropic PSPI migration result. 

 

FIG. 9. Anisotropic RT migration result. 
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FIG. 10. The efficiency comparison among PSPI, RT, APSPI, ART. 

    

FIG. 11. Isotropic reef with a TTI overburden. 

 

FIG. 12. Zero-offset seismic section of reef model. 

 

(m) 

(s) 



A comparison of APSPI and ART for TTI media 

 CREWES Research Report — Volume 17 (2005) 15 

 

FIG. 13. Isotropic PSPI migration result for reef model. 

 

FIG. 14. Isotropic RT migration result of the 6th order accuracy for reef model. 

 

FIG. 15. Anisotropic PSPI migration result for reef model. 

(m) 

(m) 

(m) 

(m) 

(m) 

(m) 



Du, Bancroft, and Lines 

16 CREWES Research Report — Volume 17 (2005)  

 

FIG. 16. Anisotropic RT migration result for reef model. 
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FIG. 10. The efficiency comparison among PSPI, RT, APSPI, ART for reef model. 

 

 

FIG. 18. TTI thrust model. 
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FIG. 19. Zero-offset seismic section of TTI thrust model. 

 

FIG. 20. Isotropic PSPI migration result of TTI thrust model. 

 

FIG. 21. Isotropic reverse-time migration result of TTI thrust model. 
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FIG. 22. Anisotropic PSPI migration result of TTI thrust model. 

 

FIG. 23. Anisotropic reverse-time migration result of TTI thrust model. 

 

FIG. 24. Anisotropic prestack PSPI migration result of TTI thrust model. 

(m) 

(m) 

(m) 

(m) 

(m) 

(m) 



A comparison of APSPI and ART for TTI media 

 CREWES Research Report — Volume 17 (2005) 19 

1 2 3 4
0

5

10

15

20

25

30

ART

APSPI

RTPSPI

C
om

pu
te

r r
un

-ti
m

e 
(m

in
)

Methods

 Time

 

FIG. 25. The efficiency comparison among PSPI, RT, APSPI, ART for thrust model. 
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APPENDIX A 

Quartic dispersion equation for P wave in weak anisotropy media and its analytical 
solution 
The frequency dispersion relationship can be described as the following equation 
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To simplify the expression, it can be written as the following quartic equation 
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To get the analytical solution, we try to find the real root of the cubic equation, 
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and determine the four roots of the quartic as solutions of the two quadratic equations 
(Abarmowitz and Stegun, 1970), 
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Considering the cubic equation 001
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If 023 >+ nm , one real root and a pair of complex conjugate roots. 

If 023 =+ nm , all roots real and at least two are equal. 

If 023 <+ nm , all roots real. 

As for cubic equation (A2), the three roots are given as follows (Abramowitz and Stegun, 
1970): Let 
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