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ABSTRACT 
There exist a variety of algorithms for the detection and picking of a seismic event in 

real-time seismic monitoring. However, all have some limitations. We propose and test a 
multi-window algorithm for the automatic detection and picking of impulsive P-phases of 
seismic events in low SNR (signal-to-noise ratio) environments. This method employs 
both the instantaneous and the averaged absolute amplitude of traces in several time 
windows before and after each time point (sample) as the characteristic functions. When 
the instantaneous absolute value of a characteristic function exceeds an automatically 
adjusted dynamic threshold, ratios based on the averages of the windows over time 
samples provide parameters to differentiate an expected event from unwanted noise. 
Examination of the algorithm by using synthetic and real data shows that the picking 
accuracy of impulsive first arrivals can be less than 1-2 samples even when the signal-to-
noise ratio is lower than 3.  

INTRODUCTION 
Effective detection and accurate picking of the arrival time of the P-phase of a seismic 

event is of considerable importance for the automatic real-time monitoring and location 
of earthquakes from observation networks. Many algorithms for the detection and picking 
of the arrival time of a seismic event are carried out in the time-domain (e.g., Allen, 1978, 
1982; Baer and Kradolfer, 1987; Dai and MacBeth, 1997; Der and Shumway, 1999; 
Kanasewich, 1981; Morita and Hamaguchi ,1984; Sleeman and Eck, 1999; Takanami and 
Kitagawa, 1988; Zhao and Takano 1999). Among the time-domain approaches, the short-
term average over long-term average ratio (STA/LTA) automatic picker or/and its 
modified versions are most widely used, in which the absolute amplitude, the power, or 
the envelope of the seismic trace is usually selected as the characteristic function for the 
calculation of STA and LTA (Allen, 1978, 1982; Baer and Kradolfer, 1987; Kanasewich, 
1981). The basic idea of the algorithm is that an event is considered detected when the 
STA/LTA ratio exceeds a pre-defined threshold. These approaches are fairly well suited 
for the arrival detection of seismic events, but have two inherent weaknesses: 1) possibly 
inaccurate arrival times due to the length of the STA window, and 2) difficulty in 
distinguishing events from high-amplitude noise.  The remaining time-domain methods 
either use autoregressive methods (Morita and Hamaguchi, 1984; Takanami and 
Kitagawa, 1988), fractal-based algorithms (Boschetti et al., 1996), or neural networks 
(Dai and MacBeth, 1995; Zhao and Takano, 1999). However, most of the methods are 
based on the pre-condition that the events have been detected (by STA/LTA) and the 
approximate times of the main arrivals are already known.   

In this paper, a multi-window algorithm is proposed, which effectively detects and 
picks the P-phase first arrivals at various levels of noise based on the instantaneous 
absolute values of the amplitude of seismic traces and their averages over three running 
time windows.  This method can also be regarded as an improved STA/LTA algorithm 
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which combines the functions of both effective detection and accurate picking. In 
addition, a waveform correction is introduced to compensate for the time delay associated 
with the trigger threshold. This multi-window procedure resembles that of a human 
operator in the detection and picking of the onsets of seismic events, and is comparable in 
accuracy to the human operator.    

METHODOLOGY 
The multi-window automatic phase picker operates in the time-domain, and is 

appropriate for a single trace. To pick the first arrival of a P-phase, it includes procedures 
for defining time windows, metrics, corresponding thresholds and waveform correction 
for the acquisition of a more accurate first arrival time.   

Time windows and metrics 
The definitions of the multiple running time windows are mainly tailored to the 

purpose of measuring the averages of the signal-to-noise within certain time extents just 
before, after and after a delay of an instantaneous time point (sample). The averages of 
absolute values of a characteristic function within BTA (Before Term Average), ATA 
(After Term Average) and DTA (Delayed Term Average) windows are respectively 
defined as follows:  
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Here, u(t) represents the amplitude or the square root of the power of seismic traces at 
a time point t; m, n, and q are lengths of the running time windows in samples 
respectively; d the time delay for the DTA window.   

The instantaneous absolute value |u(t)| is selected as the first metric R1(t) to judge the 
arrival of a possible high amplitude/power event or noise. Two other metrics, R2(t) and 
R3(t), are introduced based on the ratios of averages of ATA and DTA over BTA, and take 
the forms  
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The functions of R2(t) and R3(t) are mainly designed to discriminate between high-
amplitude short-duration and long-duration noise, respectively. The definitions for R2(t) 
and R3 (t) are based on the following rationale: 

When the first metric, R1(t), exceeds a pre-defined threshold H1(t) (see below) at a 
time point t, the second metric, R2(t), is used to separate high-amplitude but short-
duration noise from a high-amplitude but long-duration event. Equation (4) shows that 
when the ATA window contains noise, and the length of the window is several times 
longer than the noise, the R2(t) value will only be weakly affected by the existence of the 
noise; in contrast, when the ATA window is occupied by a part or all of an event, the R2(t) 
value will be much amplified. Based on this feature of R2(t), short duration noise will be 
removed. However, when the duration of high-amplitude noise is comparable to the 
length of the ATA window, R2(t) will lose its ability to distinguish an event from noise. 
This difficulty can be addressed by moving the ATA window backward a certain time 
interval as a DTA window, yielding equation (5). An appropriate delay time will reduce 
the average of the DTA window and hence R3(t) to an expected level. In this way, false 
triggers caused by high-amplitude long-duration noise can be avoided. 

Thresholds 
Thresholds pertaining to the three metrics can be pre-defined based on the expected 

SNR. An optimal first threshold, H1(t), should be set larger than the fluctuations of most 
noise but lower than expected events. This demand can be satisfied by measuring the 
mean (Em) and standard deviation (Esd) of the envelope (E(t)) of the pre-existing noise 
level of a seismic trace within a BTA window. A convenient way to acquire the envelope 
E(t) is using the absolute value of the Hilbert transform of the seismic trace. In practice, 
H1(t) is often shifted several samples backwards to avoid the unnecessarily early rising of 
H1(t) caused by the first arrival. Based on the factors, an instantaneous H1(t) is 
established as  
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Here, p is the number of shifted samples; α is a coefficient to adjust the height of the 
first threshold, and is often taken to be 3, whereby approximately 99% of the noise will 
not exceed the first threshold statistically. From equation (6), it is obvious that H1(t) is 
automatically adjusted with the variance of the level of the background noise.  

Thresholds H2(t) and H3(t) corresponding to metrics R2(t) and R3(t) are generally set to 
be 3/4 of the level of the expected SNR of events. It is noted that extraordinarily high or 
low specification of H2(t) and H3(t) will either lead to failure of the detection of events, or 
the triggering by unwanted noise. 
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Waveform correction   
As H1(t) is defined to be larger than most pre-existing noise levels, and further, the 

instantaneous absolute value at the trigger time point is higher than H1(t), the trigger time 
point must be somehow later than the real arrival time according to the configuration of 
the first arrival of an event. This belated arrival time can be compensated by introducing 
a concept of waveform correction. For an impulsive first arrival, this process is simply 
accomplished by using the height of the absolute value and the representative gradient at 
the trigger point (Figure 1).     

 

FIG. 1. Schematic diagram showing the items used in the waveform correction at trigger point (tr) 
for the corrected onset time (toc) of an event. The absolute value of seismic trace u(t) is drawn by 
a solid blue line; first threshold H1(t) is represented by a thick red dashed curve; the red dashed 
oblique line indicates the adapted gradient; the thick red bar marks the calculated amount of 
waveform correction (Δtc); the real onset time (to) is indicated by a black arrow. Vertical dotted 
lines mark the sample points at one sample interval. 
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 SYNTHETIC AND REAL DATA  
Both accuracy and reliability of the algorithm are examined by using synthetic and 

real seismic data respectively.  

 Picking accuracy 
The performance in accuracy of the multi-window algorithm is first examined on a 

series of synthetic data examples with various SNR levels. Basically, the synthetic data 
are composed of three parts: computer-generated random noise with various gains, an 
impulsive high-amplitude short-duration noise and an impulsive exponential-decay sine 
wave seismic event with its first arrival at a fixed time point. Random noise still 
superimposes the event after the arrival of the sine waves.  

 

FIG. 2. Illustration of the picking processes of the first arrival of an event in a synthetic 
seismogram.  Diagrams from bottom to top are synthetic seismogram (blue) and envelope (red); 
absolute value of seismic trace u(t) (blue) and threshold H1(t) (red); second metric R2(t) (blue) 
and threshold H2(t) (red); third metric R3(t) (blue)  and threshold H3(t) (red). The solid blue line in 
each diagram represents the zero reference level. The lengths of running time windows are 
shown in the upper left corner. The expected SNR is set to be 3. The real arrival time of the 
assumed seismic event is set at time point 401. Vertical dashed green indicates the time of the 
corrected arrival time (toc), which is also written in the upper right corner.  The delay of DTA 
window is set to 10 samples. 
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Figure 2 gives an example to show the multiple time windows, metrics and thresholds, 
and illustrates the picking accuracy of our algorithm on a synthetic seismic trace with a 
20 Hz dominant frequency event. The maximum amplitudes of the event and a high-
amplitude short-duration noise burst are assumed to be 1. The amplitude coefficient of 
random noise is assumed to be 0.25. It is noted that the three metrics of the event 
exceeded their corresponding pre-defined thresholds at sample 402, and the event is 
triggered there. The continuous procedure of waveform correction modifies the trigger 
point to the corrected arrival time of 400.91, which is merely 0.09 samples earlier than 
the real arrival time at time point 401.  

The accuracy of our automatic P phase picker is also examined on some real local 
events recorded by a small six-station vertical-component seismic array deployed in 
southern Alberta, Canada (Bingham, 1996). Examination shows that the picking accuracy 
of real events with impulsive first arrivals can be stably picked at an accuracy of less than 
1-2 samples compared to the pickings by a human operator (Figure 3). 

 

FIG. 3. Example of the picking processes of the first arrival of an event in a real seismic 
seismogram. Diagrams in the lower frame are seismogram(blue) and envelope(red), absolute 
value of seismic trace u(t) (blue) and threshold H1(t) (red) upwards. Diagrams in the upper frame 
are second metric R2(t) (blue) and threshold H2(t) (red), third metric R3(t) (blue) and threshold 
H3(t) (red) upwards. The solid blue line in each diagram represents the zero reference level. The 
lengths of running time windows are shown in the upper left corner. The vertical dashed green 
indicates the time of the corrected arrival time (toc); The red solid triangle is the first arrival picked 
by eye. The lengths of BTA, ATA and DTA are 40, 10 and 10 samples respectively; the delay of 
DTA window is set to be 10 samples. 



Multi-window event detection and picking 

 CREWES Research Report — Volume 18 (2006) 7 

Picking reliabilities  
The reliability and accuracy of the algorithm is examined by the synthetic data in the 

case of various background noise levels.  As the noise component of the synthetic data is 
computer-generated randomly, the time series used in the examinations is slightly 
different each time and can be regarded as new independent input. The examination of 
each noise levels is repeated 100 times to acquire a stable statistic of errors of detection 
between real and corrected arrival times. 

Figure 4 shows the statistical results on the reliability and accuracy of our algorithm 
with the increase of the amplitude of random noise, where the maximum arrival time 
error ranges from -1.0 to +1.25 samples.  When the coefficient of random noise was 
increased to 0.4, failures in picking of the first arrival times due to the existence of high-
amplitude noise began to occur.  

The scatter of the corrected arrival times increases with noise levels. This is 
considered to be caused by the disturbance of the waveform of first arrivals by the 
superimposed random noise. The disturbance of the waveform thus reduces the reliability 
of the two crucial factors of height and representative gradient adopted in the waveform 
correction at the trigger point.   It is noted that the measurement of the reliability of the 
first arrival remains a difficult problem. SNR is normally used to measure the quality of a 
signal and can be improved in a single-component seismic trace by signal enhancement 
using, for example, bandpass filters or Wiener filters (Douglas, 1997). Also, pre-filtering 
of low-frequency noise and direct current in the recordings is crucial to remove their 
influences on the averages of the time windows. 
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FIG. 4. Percentage of error distribution of corrected arrival times with various SNR levels. For 
each diagram, picking is repeated 100 times to get the stable statistics. Histograms indicate the 
percentage of events with corrected arrival time errors less than the indicated amounts in the 
horizontal axes. The SNR is estimated by equation SNR= Ampevent /Ampnoise

, where Ampevent and 
Ampnoise represent the maximum amplitudes of event and random noise respectively. The lengths 
of the BTA, ATA and DTA windows are shown in the upper left corner. The time delay of the DTA 
window is set to 10 samples. H2(t) and H3(t) are set to be 0.75 times the expected SNR of 2.  

CONCLUSIONS  
An effective and accurate multi-window algorithm for automatically picking the 

arrival times of P-phases of impulsive local seismic events for a single trace is presented. 
The algorithm functions reliably when the SNR is higher than 3. The picking accuracy of 
the P-phase is less than 1 sample in most low SNR environments, which is comparable to 
that achieved by a human operator.   

Variation of parameters, such as lengths of time windows, time delay interval and 
thresholds, can be tailored to a specific case. After the limitation of an expected SNR, the 
duration of the impulsive noise to be discarded, and the dominant frequency band of 
signal are indicated, all parameters can be defined directly or automatically.  Due to this 
efficiency and simplicity of the method, our algorithm is appropriate and applicable in 
real-time automatic seismic monitoring and hypocenter location with only moderate 
computing capability.   
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