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Surface-consistent Gabor deconvolution 

Carlos A. Montaña, Gary F. Margrave and David C. Henley 

ABSTRACT 
Anelastic attenuation of seismic energy is considered to be a minimum phase process. 

Gabor deconvolution aims at the simultaneous elimination of both the attenuation effects 
and the source wavelet, which in the case of explosive sources is also considered to be 
minimum phase. In the absence of an accurate estimation of Q, the phase component of 
the Gabor deconvolution operator is designed with the help of the digital Hilbert 
transform. The digital Hilbert transform, however, may suffer serious distortions when 
the seismic trace presents a poor signal to noise ratio. As redundancy is the best 
protection against the harmful effects of random noise, a more robust implementation of 
the Gabor deconvolution method can be obtained through the use of the surface 
consistency assumption. In this work, the nonstationary convolutional model for the 
seismic trace is slightly modified and converted into a surface-consistent model. The 
resulting surface-consistent Gabor deconvolution method is less sensitive to the presence 
of random and coherent noise, and surface consistent variations in the near-surface 
effects. 

INTRODUCTION 
Gabor deconvolution, in its single channel version, has been tested on real data 

successfully several times. Margrave et al. (2004) reported extensively one of tests run by 
Sensor geophysics, and Perz et al. (2005) showed the results of processing 5 seismic lines 
using Gabor deconvolution. In both cases the Gabor results were compared with the 
results obtained using conventional processing in which surface consistent deconvolution 
is combined with time variant spectral whitening. In none of the tests could a clear 
advantage of one of the methods over the other be observed. 

Additionally to the 5 real seismic lines, Perz et al. (2005) ran an experiment on a 
synthetic dataset, with the objective of testing the performance of surface-consistent 
algorithms. This dataset, described in detail below, represents a tough test for any 
deconvolution and/or attenuation compensation algorithm. The dataset presents a 
challenge due to the combination of three elements: 1) strong anelastic attenuation; 2) 
poor signal to noise ratio in a significant portion of the data; and 3) surface-consistent 
incorporation of source and receiver minimum phase wavelets. The results obtained after 
running single channel Gabor deconvolution on this dataset uncovered a weakness in the 
single trace Gabor algorithm, which in the presence of too small signal to noise ratio in 
the data, could potentially introduce undesirable artefacts. The problem is related to the 
use of the Hilbert transform in the computation of the minimum phase component of the 
Gabor deconvolution operator. 

The use of the Hilbert transform in the Gabor deconvolution algorithm is a 
consequence of the physical mathematical model on which the method is based. Gabor 
deconvolution is in essence a nonstationary extension of the Wiener deconvolution 
method. This extension is made possible with the help of 3 theoretical elements: the 
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constant Q theory for attenuation (Kjartanson, 1979), the nonstationary convolutional 
model (Margrave, 1998) and the Gabor transform (e.g. Merlins, 1999). In the constant Q 
theory for attenuation, in which Q is considered independent of frequency, the concept of 
minimum phase arises as a consequence of linearity, causality and dispersion (Futterman, 
1962). Anelastic attenuation is thus considered a minimum phase process in the constant 
Q theory, and therefore the operators designed to compensate for its effects are also 
minimum phase. The use of the digital Hilbert transform in the design of the Gabor 
deconvolution operator is based on the following important result from mathematics: in a 
minimum phase function, the phase spectrum is equal to the Hilbert transform of the 
logarithm of the amplitude spectrum. 

Although the constant Q theory for attenuation finds an analytical expression to 
compute the Hilbert transform of the attenuation function (e.g. Aki and Richards, 2001), 
the explicit dependence of this analytical expression on Q makes it inappropriate for the 
cases when either a poor estimation of Q, or no estimation at all is available. In these 
cases the estimation of the phase through the Hilbert transform of the logarithm of the 
amplitude spectrum seems to be a more suitable alternative. 

One of the drawbacks of using the digital implementation of the Hilbert transform to 
compute the phase is its high sensitivity to noise. The digital Hilbert transform is a 
discrete implementation of the mathematical definition of the Hilbert transform given for 
continuous functions. The mathematical definition involves an integral over all the 
frequencies with the consequence that the presence of noise at any the frequency will 
affect the estimation of the phase at all frequencies. This is the reason that the use of the 
Hilbert transform on data with low signal to noise ratio leads to poor results in the 
computation of the phase. One of the potential solutions to this problem is the application 
of the surface consistency assumption, thus taking advantage of the redundancy of the 
seismic data to attenuate the distorting effects of noise in the design of the deconvolution 
operators. An alternative solution called ‘Ensemble based deconvolution’ is presented by 
Henley et al. (2006), in a different paper of this report. 

The performance of a minimum phase, surface-consistent Gabor deconvolution 
method in the presence of high levels of random noise is examined in this paper. A 
synthetic seismic dataset, courtesy of DIVESTCO, is used to illustrate the problem and 
its surface-consistent solution. 

THEORY 

The theoretical fundamentals of Gabor deconvolution 
A generally accepted model for the seismic trace is to consider it as a convolution of 

the earth seismic response with a wavelet. In turn, this wavelet can be regarded as the 
convolution of several effects: source signature, recording filter, earth filter, surface 
reflections and geophone response (e.g. Robinson, 1980). Deconvolution is the process of 
removing the wavelet from the seismic trace to estimate the earth seismic response, 
which is composed of primaries and multiple reflections. The application of 
deconvolution in seismic processing relies on the fulfillment of a set of assumptions on 
which the convolutional model is based: stationarity, minimum phase wavelet, and white 
additive noise. 
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In the presence of anelastic attenuation, the stationary assumption is not valid. A 
nonstationary convolutional model (e. g. Margrave et al., 2005) is formulated using the 
constant-Q theory and the mathematical operation called nonstationary deconvolution 
(Margrave, 1998).  

The Constant Q theory 

This is a linear theory in which Q is considered independent of frequency. In the 
constant Q theory, the propagation of a pulse in an anelastic medium is described by  
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where f is the frequency, V is the velocity, x is the traveled distance and Q is the 
attenuation parameter. By using this formula to model the propagation of what initially 
was a perfect impulse, the effects of attenuation can be observed (Figure 1). In a 
homogeneous medium the effects can be summarized as: (1) exponential decay with 
amplitude, due to energy absorption by the medium; (2) broadening of the pulse, due to 
the fact that higher frequencies are more attenuated; (3) a growing phase delay and (4) an 
asymmetric pulse shape. The last two effects are due to dispersion, which always 
accompanies attenuation, according to lab observations, and are relative to nondispersive 
propagation (velocity independent of frequency). The velocity dispersion relation used in 
this example is  

 

FIG. 1. Propagation of a pulse through a homogeneous anelastic medium. The dotted line 
corresponds to the case when dispersion is not considered. The continuous line corresponds to 
the dispersive case. 
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where f0 is a reference frequency for which the velocity V(f0) is known. 

The Nonstationary convolutional model 

The stationary convolutional model can be extended to the nonstationary case by using 
the operation ‘nonstationary convolution’ as defined by Margrave (1998). This 
nonstationary model takes into account anelastic attenuation. In the nonstationary 
convolutional model an attenuated trace )(ˆ fσ can be modelled as the nonstationary 
convolution between the attenuation impulse response and the reflectivity, followed by a 
stationary convolution with the source wavelet as depicted in Figure 2, and as expressed 
analytically by the time-frequency expression 

 ∫
∞

∞−

−= ττρτασ τπ deffwf if
Q

2)(),()(ˆ)(ˆ , (3) 

where the hat (ˆ)symbolizes the Fourier transform, w is the wavelet, ρ is the reflectivity, τ 
is the traveltime and αQ(f,τ) is the time-frequency exponential attenuation function, 
defined as 

 ( ))/(/exp),( QfiHQffQ τπτπτα +−= , (4) 

in which the real and imaginary components in the exponent are connected through the 
Hilbert transform H, a result that is consistent with the minimum phase characteristic 
associated with the attenuation process. As written, equation (3) assumes a spatially 
constant Q and models only primaries, though both of these simplifications can be 
removed with a slight complication in the formula.  
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FIG. 2. Nonstationary convolutional model. For the case of finite discrete signals, the stationary 
and nonstationary convolution operations can be expressed as the multiplication of a matrix by a 
column vector. 
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The Gabor transform 
The Gabor transform is a collection of local spectra, a time-frequency representation 

of a signal obtained with the help of a set of analysis windows. Each local spectrum is 
obtained by multiplying the signal by a window and taking the Fourier transform of the 
product. The result constitutes a slice of a time-frequency representation of the signal 
centred at the midpoint of the window (Figure 3).  
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FIG. 3. Generation of the Gabor transform.  

Analytically, the Gabor transform, Gg[σ(t)], of the signal σ(t) is given by  

  ∫
∞
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where )(tg is the Gabor analysis window and τ is the location of the window center. The 
subscript g emphasizes the fact that different Gabor transforms of the same signal are 
possible, according to the set of windows chosen. 

The inverse Gabor transform is defined as  

 ∫ ∫
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where )(tγ  is the Gabor synthesis window. )(tg  and )(tγ  must satisfy the partition of 
unity condition 
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A highly efficient Discrete Gabor Transform algorithm is obtained by the 
implementation of a partition of unity based on Lamoureux windows (Grossman et al., 
2002). 

The (single channel) Gabor deconvolution algorithm 
Gabor deconvolution is a nonstationary extension of Wiener’s deconvolution method, 

based on an approximate, asymptotic factorization of the nonstationary trace model of 
equation (3), via the Gabor transform, 

 ),]([),()(ˆ),]([ ftGftfwftG Q ρασ ≈ , (8) 

which states that the Gabor transform of the seismic trace, G[σ](t,f), is approximately 
equal to the product of the Fourier transform of the source wavelet, )(ˆ fw , the time-
frequency attenuation function, αQ(t,f), and the Gabor transform of the reflectivity 
G[ρ](t,f).   

This factorization is possible thanks to the rich set of mathematical relations that link 
the Gabor transform and the pseudodifferential operators. Equation (8) is just a first order 
approximation. 

The formulation of Gabor deconvolution from Equation (8) is analogous to the 
formulation of Wiener deconvolution in the frequency domain. As in Wiener’s method, 
Gabor deconvolution smoothes the Gabor magnitude spectrum of the seismic signal 
|Gσ(t, f)|to estimate ),( ftΔ ,the product of the magnitudes of the attenuation function 
and the source signature,  

 ),( ftΔ ≈ )( fw ),( ftQα . (9) 

A phase function for Δ(t,f) is then estimated, with the help of the digital Hilbert 
transform, H, using the minimum phase assumption,  

 ( )ftHft ,(ln),( Δ=ϕ . (10) 

Finally the Gabor spectrum of the reflectivity is estimated in the Gabor domain as: 

 
),(
),(),]([

ft
ftGftG est Δ

= σρ , (11) 

and the reflectivity estimate is then recovered as the inverse Gabor transform of the result 
of equation (11). Removal of the source signature and compensation for attenuation are 
applied simultaneously in this process. The algorithm is sketched in Figure 4. 
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FIG. 4. Sketch of the single channel Gabor deconvolution algorithm. The first step is to compute 
the Gabor transform, (b), of the attenuated trace, (a). Then the deconvolution operator, (c), is built 
by smoothing (b) and computing its minimum phase through the Hilbert transform. Finally, by 
spectrally dividing (b) by (c), an estimate of the Gabor transform, (e), of the deconvolved trace, 
(f), is obtained. 

Smoothing 
A very important element of the Gabor algorithm is the smoothing process. Different 

kinds of smoothing are possible, Iliescu and Margrave (2002) use 2D boxcar smoothing 
and hyperbolic smoothing along curves of τf=constant. For the surface-consistent 
implementation of Gabor deconvolution presented below, the hyperbolic smoothing 
method is used, because it allows explicit estimations of the wavelet )( fw and the 
amplitude of the attenuation function, ),( fQ τα . Grossman et al. (2002) use a different 

method to estimate )( fw and ),( fQ τα  based on least square fitting of equation (8), 
which also produces an estimate of Q. 

Minimum phase 

Minimum phase is an essential concept in Gabor deconvolution. Besides the 
minimum-phase character associated with the source wavelet generated by an explosive 
source, the constant-Q theory gives strong arguments to assert that the attenuation earth 
filter is also endowed with a minimum-phase character (e.g. Futterman, 1962).  

In signal theory a minimum phase wavelet is defined as a causal stable wavelet with a 
causal stable inverse, in which the term ‘stable’ is associated with a precise physical 
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meaning: finite energy. A minimum phase wavelet is also the one on which energy 
arrives the earliest among all possible causal, invertible wavelets with the same amplitude 
spectrum.  

 For this special kind of wavelet, the mathematical theory gives an extraordinary, 
interesting and useful result: the phase spectrum of a minimum phase wavelet is equal to 
the Hilbert transform of the logarithm of its amplitude spectrum. 

Hilbert transform 

The estimation of the phase spectrum of the Gabor deconvolution operator is achieved 
by resorting to the minimum phase assumption via the Hilbert transform. The Hilbert 
transform of the deconvolution operator is found either analytically, by using the 
equation  

 [ ]
∞

−=Η=
V
f

fV
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which is a mathematical result from the linear casual constant Q theory for attenuation 
(Futterman, 1962), or digitally, by using the mathematical definition of the Hilbert 
transform, 
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Although the equation (12) is an analytical expression for computing the phase, it has 
the inconvenience that it depends on the phase velocity, given by Equation (2), which in 
turn depends explicitly on the attenuation parameter Q. This explicit dependence on Q 
makes this method for computing the Hilbert transform only suitable for the cases when a 
good estimation of Q is available. Unfortunately, in the majority of the practical cases, 
the uncertainty associated with Q is high, and this uncertainty is transmitted to the phase 
computed in this way. The digital method to compute phase, using Equation (13), has the 
advantage of not being explicitly dependent on Q; therefore the estimation of Q is data 
driven. However there are two disadvantages associated with this digital estimation: an 
error in the estimation of the integral, and high sensitivity to noise. An error in the phase 
is generated by the substitution of the infinite limits in the definition of the Hilbert 
transform by finite limits determined by the sample rate (Equation 13). An approximate 
solution to this problem, adding a correction term linear in time and quadratic in 
frequency, is presented and discussed in Montaña and Margrave (2005). 

An important issue in the consideration of the digital Hilbert is the impact of noise. In 
Figures 5 to 7, an experiment is shown in which noisy versions of a synthetic attenuated 
trace, with different signal to noise ratio (S/N), were Gabor deconvolved. The input traces 
are shown in Figure 5, the output traces in Figure 6 and a plot of the local cross-
correlation between the real and the expected output as a function of time and S/N is 
shown in Figure 7. The local cross-correlation is obtained by taking the cross-correlation 
between the two traces inside short windows, and extracting the maximum coefficient of 
the cross-correlation as a local attribute to quantify the quality of the result.  
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FIG. 5. A seismic trace (S), its attenuated version (Sq) for Q=100, and five noisy versions of Sq 
for different signal to noise ratios. 

 

FIG. 6.The ideal output, the clean input (Sq) and the output for the Gabor deconvolution of the 
traces shown in the previous figure. Each trace is identified by its S/N. All the outputs were 
filtered to a maximum frequency of 70 Hz. 
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FIG. 7. Local cross-correlation between the Gabor deconvolved traces for different S/N and the 
ideal output. The deterioration of the quality of the output grows with lower S/N and also with 
time. 

It can be observed how the results deteriorate when the S/N ratio increases and/or when 
the time increases. This experiment shows the harmful effects of noise on the 
performance of minimum phase Gabor deconvolution, effects that need to be minimized 
to improve the quality of the results. 

The surface-consistent convolutional model 
In this model the earth’s effects on a seismogram are classified into those caused by 

the near surface and those caused by the subsurface. In practice the near surface effects 
are associated with the source and the receiver coordinates, whereas subsurface effects 
are those which vary as a function of midpoint and offset (Figure 8). 

The surface consistency concept can be applied to the nonstationary convolutional 
model for the seismic trace, stated above in equation (8), by introducing two 
modifications. The first modification is to split the wavelet appearing in the original 
single channel formulation into two wavelets: a source wavelet component that depends 
on the source coordinate, and a receiver wavelet component that depends exclusively on 
the receiver coordinate. The second modification is the assignment of an exclusive 
dependence on the midpoint coordinate to the attenuation and reflectivity factors (Figure 
9). With these modifications the surface-consistent nonstationary convolutional model is 
expressed by 
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where s, r and h are the source, receiver and midpoint coordinates respectively, 
G[σ](f,τ,h,r,s) is the Gabor transform of the surface-consistent seismic trace, ws(f,s) and 

σ(t)
s rx

),(),(),(),(),,,,( trwtxOthtswthxrs rxhs ⊗⊗⊗= ρσ

h

sw rw
hρ xO

σ(t)
s rx

),(),(),(),(),,,,( trwtxOthtswthxrs rxhs ⊗⊗⊗= ρσ

h

sw rw
hρ xO

 

FIG. 8. Surface-consistent convolutional model for the seismic trace. In this model the trace is 
considered as the convolution of 4 components: source wavelet, receiver wavelet, midpoint and 
offset components. 

wr(f,r) are the Fourier transform of the source and receiver wavelets respectively 
(including the near surface attenuation effects), α(f,τ,h) represents the subsurface 
attenuation effects and G[ρ](f,τ,h)  is the Gabor transform of the reflectivity. 

A first approach to a surface-consistent Gabor deconvolution algorithm 
For the description of the algorithm each trace will be identified by a set of indices i, j, 

k corresponding to the midpoint, source and receiver locations respectively. The 
algorithm is sketched in Figures 9 and 10 and can be summarized as follows. The single-
channel Gabor deconvolution algorithm, using hyperbolic smoothing, is applied to each 
trace. The output of this step on the σijk(t) trace are estimations of the amplitude 
component of the ith midpoint subsurface attenuation operator, |α(ω,τ,xi)| and the wavelet 
wjk.  The jth source wavelet, ws(ω,sj), and the kth receiver wavelet, wr(ω,rk) are estimated 
as the square root of the wavelet wjk. The estimated components are stored in midpoint, 
source and receiver arrays, in the bin corresponding to the indices of the trace (Figure 9). 

The next step is to do ensemble averages in the source receiver and midpoint domain 
(Figure 10). The components stored in each bin are stacked, and then the stacks combined 
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to create the magnitude of the surface-consistent Gabor deconvolution operator, ),( τωθijk , 
for the trace σijk(t), 

 ( ) ( )krjsiijk wwAf *.**),( =τθ , (15) 

≈
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FIG. 9. Surface-consistent Gabor deconvolution. From the single channel Gabor deconvolution, 
the source, receiver and midpoint components of each trace are stored in arrays. 

where (**) denotes element by element multiplication between a column vector and the 
rows of a matrix, (.*) means element by element matrix multiplication, and the matrix Ai 
and the vectors (ws)j and (wr)k are defined by, 
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where Li, Mj and Nk are the CMP, source and receiver folds respectively. 
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As it is assumed that θijk(f,τ) is a minimum-phase function, its phase component is 
estimated from its amplitude spectrum using the Hilbert transform as 

 ∫ −
=

B

ijk
ijk df

ff
f

f '
'

),'(ln
),(

τθ
τϕ , (16) 

where B  denotes the available spectral band. It is not hard to see why the computation of 
phase through equation (16) could be harmed by the presence of noise. For any 
frequency, the phase is found as an integral over all the frequencies, thus the presence of 
noise at a particular frequency will affect the phase at any other frequency. 

Finally the Gabor spectrum of the reflectivity, estijk fG ),( τρ  is estimated in the Gabor 
domain as 

 
),(
),(

),(
τθ
τσ

τ
f
fG

fGr
ijk

ijk
estijk = , (17) 

where ),( τσ fG ijk is the Gabor transform of the seismic trace. 
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FIG. 10. The surface-consistent deconvolution operator is built by combining the ensemble 
average in the source, receiver and midpoint domain of the components computed in the single-
channel Gabor deconvolution process. 

EXAMPLES 
For the first example a synthetic dataset (courtesy of DIVESTCO) is used to test the 

method. This dataset is really challenging for any surface consistent, and/or attenuation 
compensation method due to the combination of three elements in its generation: strong 
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attenuation, convolution with surface-consistent source and receiver-wavelets and strong 
random noise. It was generated using the reflectivity series from a real well log, storing 
the reflectivity into the zeroed traces of a real seismic line, applying forward NMO and 
forward Q filtering with Q=40, and then convolving each trace with surface-consistent 
minimum phase source and receiver wavelets. Finally random noise, with strength 
varying from trace to trace in such a way as to mimic acquisition on a windy day, was 
added to each trace. The dataset is made up of 78 shots, 96 channels per shot, 2 seconds 
length. Its generation is sketched in Figure 11. Signal to noise ratio analysis of one 
typical shot and a brute stack are shown in figure 12. A detailed signal analysis of this 
dataset is presented by Henley et al. (2006) in a different paper of this report.  

After the application of minimum phase, single-channel Gabor deconvolution to the 
raw shots (Figure 13), the computation of the phase through equation (13) is dramatically 
distorted in the areas with low S/N, especially the original flat reflectors between 1300 
and 1600 ms have been transformed into fake complex structures. 

After the application of minimum phase, single-channel Gabor deconvolution to the 
raw shots (Figure 4), the computation of the phase through equation (4) is dramatically 
distorted. The stack of the deconvolved data is shown in Figure 5, clearly showing how 
the original flat reflectors between 1300 and 1600 ms have been transformed into fake 
complex structures.  

The application of the minimum phase, surface-consistent Gabor deconvolution to the 
raw shots is much less sensitive to the presence of noise as can be seen in the stack of the 
deconvolved shots shown in Figure 7. The reflectors between 1300 and 1600 ms do not 
show the fake complexity introduced by the single-channel Gabor deconvolution.  

Q=40

V=3500

⊗

s

⊗

r Random noise addedQ=40Q=40

V=3500V=3500

⊗

s

⊗

r Random noise added

 

FIG. 11. Generation of the synthetic dataset used to test the surface-consistent Gabor 
deconvolution algorithm.  
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FIG. 12. The bottom panels show the signal to noise ratio analysis of the synthetic data shown in 
the top panels. To the left is shown the S/N analysis of one shot, and to the right the 
corresponding S/N of the brute stack. Only the red areas have good S/N. In the green the S/N is 
acceptable and the bluish is poor. 

CONCLUSIONS 
A poor signal to noise ratio may harm the estimation of the minimum phase Gabor 

deconvolution operator, introducing undesirable artifacts into the results. The Surface-
Consistent implementation of Gabor deconvolution allows a robust estimation of the 
minimum phase deconvolution operator with respect to random noise and surface-
consistent variations in the source and receiver wavelets. 
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FIG. 13. Stack of the synthetic data shown in figures 10 to 12, after prestack single channel 
Gabor deconvolution was applied. The distortions introduced by noise into the computation of the 
Hilbert transform are evident in the reflectors between 1300 and 1600 ms. 

 

FIG. 14. The same data shown in the previous figure, but surface-consistent instead of single 
channel Gabor deconvolution was used. The negative effects of noise on the computation of the 
Hilbert transform has been strongly attenuated by the surface consistent estimation of the Gabor 
deconvolution operator. 
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FIG. 15. Same data of the previous 2 figures but instead of Gabor deconvolution, the 
conventional flow process (surface consistent Wiener deconvolution combined with TVSW) was 
used.  
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