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ABSTRACT

Spherical-wave re�ection coef�cients, which are vital in modeling supercritical re�ec-
tions, are considerably more dif�cult to calculate than their plane-wave analogues. We
seek to narrow this gap by performing one of the requisite integrations analytically. The
key is to assume a wavelet of the Rayleigh form. The resulting re�ection coef�cients are
accurate, even if the true wavelet is not a Rayleigh wavelet, as long as one follows a simple
prescription for choosing the wavelet parameters. The method is also ef�cient enough to
implement in an interactive program, and is thus promising for use in high-volume, super-
critical modeling.

INTRODUCTION

The motivation to carry out spherical-wave AVO modeling is rooted in the rich potential
of long-offset amplitudes. Long offsets are key to obtaining density information from AVO
analysis (Wang, 1999) and help to clarify interpretation of Class I amplitudes (Hilterman
et al., 2000). However, long offset data introduce additional challenges to AVO inversion.
For instance NMO stretch and offset-dependent tuning become substantial at wide angles,
necessitating the use of waveform inversion (Downton, 2005). Anisotropic moveout is
also more pronounced at long offsets. In addition to these problems, wide angle data can
traverse a critical angle, and this introduces anomalously large amplitudes. Downton and
Ursenbach (2006) have presented a method for AVO inversion of supercritical amplitudes,
but this relies on an accurate theory of supercritical re�ectivities. The shortcomings of
the plane-wave Zoeppritz re�ectivities near the critical angle are well-known, e.g. (Haase,
2004a; van der Baan and Smit, 2006), and spherical-wave re�ectivities are required to
correctly represent behavior in this region and to make available the full value of long-
offset data.

Two paradigms currently exist for the calculation of re�ected spherical waves, namely,
harmonic and impulsive. The theory for the harmonic source is credited to Lamb (1904)
and Sommerfeld (1909) and is described in standard texts, e.g. Aki and Richards (1980);
there is also evidence of its use in exploration seismology (MacDonald et al., 1987). The
theory for the impulsive source was pioneered by Cagniard (1939) and has been developed
by Bortfeld (1962), Tygel and Hubral (1984) and Hubral and Tygel (1985). Thus two
general approaches exist, but neither has found extensive application in practical problems.

The principal obstacle to the use of these methods is computational burden. Seismic
wavelets are neither monochromatic nor spikelike, but are bandlimited. Thus appropriate
re�ectivities require either calculation for a range of monofrequency wavelets, followed by
inverse Fourier transformation with the wavelet, or calculation of impulsive results for a
number of time lags, followed by convolution with the wavelet. The former approach has
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been realized as a practical scheme (Haase, 2004a), but both approaches require extensive
computations, and one wonders if a more ef�cient approach is possible.

Of course it is tempting to look for approximations, but these must honor behavior in the
critical region in order to address the applications described above. Krail and Brysk (1983)
developed an approximation to the spherical-wave potential (equation 1 below) consisting
of a series expansion in 1/(kr), where k is the wavenumber and r is the distance from
the source. In addition they replace the plane-wave coef�cient and the Bessel function of
the integrand by Taylor series expansions. Furlong et al. (1994) developed a somewhat
different approximation that consists of assuming that the re�ected and transmitted waves
are spherical (or dipolar for converted waves). The re�ection coef�cients are then obtained
by matching boundary conditions across the interface. Both of these approximations may
be reasonable for small angles and may be of value in near-surface studies, but both rest
upon assumptions that are not appropriate in the vicinity of critical angles.

The method proposed in this paper is designed to substantially reduce the time re-
quirements for spherical-wave re�ection coef�cient calculations, while still maintaining
accuracy in the critical region. It is based on three approximations:

• The wavelet is assumed to be of a particular form which allows for analytical inte-
gration over frequency. By introducing the wavelet at the outset one avoids an entire
layer of numerical integrations.

• The arrival time at the receiver is assumed to be equal to that predicted by ray theory,
which further reduces the number of numerical integrations.

• The wave displacement is assumed to be directed along the raypath. This reduces the
displacement from a vector to a scalar.

We will �rst derive a method based on these approximations. We will then investigate
the effect of each approximation and perform timing tests to show that the method is both
accurate and ef�cient.

THEORETICAL DEVELOPMENT

A fundamental model in exploration seismology is that of P-wave re�ections in a two-
layer elastic model, illustrated in Figure 1. The plane-wave re�ection coef�cient for this
system is the well-known Zoeppritz expression, RPP(p; α1, β1, ρ1; α2, β2, ρ2), where p is a
ray parameter (the horizontal P-wave slowness), α, β, and ρ are P-wave velocity, S-wave
velocity, and density, and subscripts 1 and 2 refer to upper and lower media. The gener-
alized re�ection coef�cient associated with spherical waves, which includes contributions
from both re�ected and head waves, can be given as an integral over RPP(p). The funda-
mental theory is well-established, and it is given in detail, for example, by Aki and Richards
(1980). They express the spectrum of the displacement potential as a weighted integral over
all ray parameters of cylindrical waves times plane-wave re�ection coef�cients. In analogy
with their equation 6.30 for free surface re�ections, the pertinent expression for P-wave
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FIG. 1. Schematic of the two-layer model investigated in this study.

re�ections from a solid-solid interface can be derived as

φ(ω) = Aiωe−iωt

∫ ∞

0

RPP(p; α1, β1, ρ1; α2, β2, ρ2)
p

ξ1

J0(ωpr)eiωξ1(z+h)dp. (1)

Here A is a scaling factor, ω is the frequency (assumed positive in the derivation), t is time,
ξ1 is the vertical P-wave slowness in the upper layer, J0 is the zero-order Bessel function,
(0, 0, h) is the source position, r is the radial receiver coordinate, and z is the vertical
receiver coordinate.

The displacement is obtained by applying a gradient in the receiver position to the above
potential. Weighting by the wavelet and applying an inverse Fourier transform yields the
time trace observed at the receiver. One way to obtain AVO information from this trace
is to extract the maximum of the trace envelope. This method has been implemented by
Haase (2002, 2003, 2004a), and we refer to it as the numerical method, to distinguish it
from the method of this paper.

The �rst step in developing the semi-analytical method of this paper is to interchange
the order of frequency and ray-parameter integrations, and then to choose a wavelet which
allows one of these, the frequency integration, to be carried out analytically.

CREWES Research Report � Volume 18 (2006) 3



Ursenbach et. al

Analytic integration over ω

Using the spectrum of the potential, equation 1, we write the time-dependent potential
as

Φ(t) =

∫ ∞

−∞
w(ω)φ(ω)dω, (2)

where w(ω) is the wavelet and we require it to be of the following form:
w(ω) ∝ |ω|n exp(−n|ω|/ω0), n = 1, 2, 3, . . . , 0 < ω0 < ∞. (3)

This wavelet has been discussed in a seismic context (Hubral and Tygel, 1989) and we refer
to it as the Rayleigh wavelet of order n. Its maximum amplitude occurs at ω0.

Equation 2 involves integration over both positive and negative frequencies. However
it is advantageous to change the lower bound of the ω-integration to zero and multiply by a
factor of two. This yields the analytic or complex potential, Φc(t), whose real part is equal
to the original integral (see Kanasewich (1973), eqn. 11.9.14). We will require the analytic
trace later, so this is a convenient step to obtain it more directly. Substituting equations 1
and 3 into equation 2 (with a modi�ed lower bound) we then interchange the order of p and
ω integrations∗, as shown here:

Φc(t) = 2

∫ ∞

0

ωne−nω/ω0

{
Aiωe−iωt

∫ ∞

0

RPP(p)
p

ξ1

J0(ωpr) exp[iωξ1(z + h)]dp

}
dω

= 2Ai

∫ ∞

0

RPP(p)

{∫ ∞

0

ωn+1J0(ωpr)e−ω{(n/ω0)+i[t−ξ1(z+h)]}dω

}
p

ξ1

dp (4)

≡ 2Ai

∫ ∞

0

RPP(p)I(p, ξ1(p), r, z, h, t, n, ω0)
p

ξ1

dp

In the last step we de�ne I(p, ξ1, r, z, h, t, n, ω0) as the result of integration over ω. Chang-
ing the lower bound to zero also gives this integral the form of a Laplace transform, and an
analytic solution is available (Erdelyi, 1954):

I =
(n + 1)!

τn+2
Pn+1

(
T

τ

)
, (5)

T =
n

ω0

+ i(t− ξ1[z + h]), (6)

τ =
√

T 2 + p2r2, (7)
where Pn(x) is a Legendre polynomial.

Calculation of the gradient

Next we apply a gradient with respect to receiver position in order to obtain the dis-
placement. If we assume that displacement is in the direction of propagation of the re�ected

∗Bortfeld (1962) justi�es changing the order of integration for this integral. He develops a method in
which a sinc function wavelet is employed for the integration over frequency, and the actual seismic wavelet
is introduced at the end of the procedure by convolution. His method is therefore more general than the
present approach, but also more computationally intensive.
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wave, then we can begin by substituting r = R sin θi and z + h = R cos θi (see Figure 1).
A directional derivative is then obtained by taking a simple derivative with respect to R.
We use a ‖-subscript to indicate displacement parallel to the ray direction:

uc
‖(t) =

∂Φc(t)

∂R
= 2Ai

∫ ∞

0

RPP(p)

(
∂I

∂R

)
p

ξ1

dp, (8)

∂I

∂R
= −(n + 2)!

τn+3
Pn+1

(
T

τ

)
∂τ

∂R

+
(n + 1)!

τn

n + 1

τ 2 − T 2

[
Pn

(
T

τ

)
− T

τ
Pn+1

(
T

τ

)]
∂

∂R

(
T

τ

)
, (9)

∂T

∂R
= −iξ1 cos θi, (10)

∂τ

∂R
=
−iξ1T cos θi + Rp2 sin2 θi

τ
. (11)

The quantity uc
‖ thus represents the analytic trace. We should bear in mind that the assump-

tion regarding the direction of displacement of the re�ected wave may not be valid in the
vicinity of the critical point, where it cannot be distinguished from the head wave. However,
the directional difference in this region is small, and results below show the assumption to
be reasonable.

Re�ected-wave amplitude

The complex displacement of equation 8 is given as a function of time, t. Let us assume
that the signal of interest will arrive at the receiver at time R/α1. (The discussion regarding
the direction-of-displacement assumption applies here as well.) Let us set t = R/α1 (note
that this must be done only after applying the gradient). The result of this is an estimate of
the maximum amplitude of the re�ected wave, which contains information on the re�ection
coef�cient. It is given by equations 8-11, but with the quantity T replaced by

T0 = n/ω0 + i(R/α1 − ξ1[z + h]), (12)

and with all derivatives changed from ∂
∂R

to ∂
∂R

∣∣
T=T0

, emphasizing that evaluation of t
occurs after application of the derivative.

Changing the variable of integration

Collecting the above results together, the re�ected spherical-wave complex displace-
ment is given by the integral

uc
‖(t = R/α1) = 2Ai

∫ ∞

0

RPP(p; α1, β1, ρ1, α2, β2, ρ2)
∂I

∂R

∣∣∣∣
T=T0

p

ξ1

dp. (13)

Because p and ξ1 satisfy the relation (pα1)
2 +(ξ1α1)

2 = 1, it is acceptable to de�ne sin θ ≡
pα1 and cos θ ≡ ξ1α1. In the following numerical implementation it is more convenient to
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use cos θ as the integration variable so a change of variables is performed. First we note
that (p/ξ1)dp = tan θd(

√
1− cos2 θ/α1) = −d(cos θ)/α1. Next the integration range is

divided into two parts:
∫∞
0
· · · dp =

[∫ 1/α1

0
+
∫∞

1/α1

]
· · · dp. Under the change of variables

this becomes
[∫ 0

1
+
∫ i∞

i0

]
· · · d(cos θ), so that equation 13 is expressed as

uc
‖(t = R/α1) = 2A

[∫ 1

0

−
∫ i∞

i0

]
RPP(θ)

(
i

α1

∂I

∂R

∣∣∣∣
T=T0

)
d(cos θ). (14)

Normalization

Spherical waves decrease in amplitude with distance traveled, while plane waves do
not. This complicates comparison of re�ection coef�cients. It is desirable to remove the
spherical divergence and near-�eld effects and to thus isolate the effect on amplitude of
re�ection alone. One simple approach is to normalize the spherical-wave result by the result
that would be obtained if the re�ection coef�cient were set to unity. Setting RPP = 1 in the
spherical-wave potential (equation 1) allows the integral over p (the Sommerfeld integral)
to be performed analytically, recovering the spherical-wave potential in a homogeneous
medium,

φhom(ω) =
A

R
exp

[
−iω

(
t− R

α1

)]
. (15)

Taking the derivative with respect to R, setting t = R/α1, weighting by the wavelet, and
then �nally integrating over the positive frequencies and multiplying by two yields the
homogeneous analogue of equation 14,

uc,hom
‖ (t = R/α1) = 2A

[
−
(ω0

n

)n+1 n!

R2
+ i
(ω0

n

)n+2 (n + 1)!

α1R

]
. (16)

Dividing equation 14 by equation 16 gives a normalized re�ection coef�cient suitable for
comparison with the plane-wave result. If equation 16 is incorporated earlier, by dividing it
into the weighting function, 2A(i/α1)(∂I/∂R)|T=T0 , then a normalized weighting function
results, the real part integrating to one, and the imaginary part to zero. We will denote this

Wn =

i
α1

∂I
∂R

∣∣∣
T=T0

− (ω0

n

)n+1 n!
R2 + i

(
ω0

n

)n+2 (n+1)!
α1R

(17)

with [∫ 1

0

−
∫ i∞

i0

]
Wn(θ, θi, ω0, R, α1)d(cos θ) = 1 + 0i. (18)

We can then write the ratio of equation 14 and equation 16 as a spherical-wave re�ection
coef�cient:

Rsph
PP (θi) =

[∫ 1

0

−
∫ i∞

i0

]
RPP(θ)Wn(θ, θi, ω0, R, α1)d(cos θ), (19)

where Wn(θ, θi) acts as a weighting function to transform RPP(θ) to Rsph
PP (θi).
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A connection can be drawn between this normalization and current processing prac-
tice. The two terms in the normalization factor, equation 16, correspond to near-�eld and
far-�eld effects respectively. If one eliminates the near-�eld term, then normalization is
equivalent to a spherical divergence correction. In this case equation 18 would not hold
perfectly, but for the models considered in this study the error is negligibly small. This can
be understood by noting that the ratio of the near-�eld and far-�eld terms is i n

n+1
S, where

S ≡ α1/(Rω0), a quantity indicating the importance of spherical effects. For a monochro-
matic wavelet, the quantity controlling the size of spherical effects is α1/(Rω) (also written
1/(kr) in the introduction). It is therefore reasonable that the quantity S arises naturally in
this theory. Because the two terms are 90◦ out of phase, the fractional change in magnitude
from neglecting the near-�eld is on the order of S2. This is negligible except in near-
surface studies. Thus, although the calculations below all use Wn as given by equation 17,
essentially identical results would have been obtained using the approximation

Wn ≈
(

n

ω0

)n+2
R

(n + 1)!

∂I

∂R

∣∣∣∣
T=T0

. (20)

Simpli�ed expressions for Wn

The previous section is key to producing our �nal results. We have de�ned the quantity
S, and it turns out that after normalization all dependence on R, ω0 and α1 is via this
combined quantity, so that equation 19 can be rewritten as

Rsph
PP (θi) =

[∫ 1

0

−
∫ i∞

i0

]
RPP(θ)Wn(θ, θi, S)d(cos θ). (21)

This can be demonstrated by working out an explicit expression for Wn:

Wn = −(nS)n+2

τn+4

BPn(T/τ) + CPn+1(T/τ)

1 + iSn/(n + 1)
, (22)

B = (n + 1)(i + nS)τ , (23)
C = −n2(1 + n)S2 − inS[2(n + 1) + cos θ cos θi]

+n(sin2 θ + sin2 θi) + 3(1− cos θ cos θi)− 2(cos θ − cos θi)
2, (24)

τ =
√

T 2 + sin2 θ sin2 θi,

=
√

(nS)2 + 2inS(1− cos θ cos θi) + (cos θ − cos θi)2, (25)
T = nS + i(1− cos θ cos θi). (26)

Equations 21-26 together form the central theoretical result of this paper. They provide
the machinery for ef�cient calculation of spherical-wave re�ection coef�cients.

We can now see explicitly that Wn depends only on cos θ, cos θi, and S. This is ob-
viously convenient for the numerical integration over cos θ in equation 21. Quantities
which affect the magnitude of spherical effects are combined in the dimensionless quantity
S = α1/(Rω0). Spherical effects increase with increasing velocity in the overburden (α1 ↑),
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decreasing distance traveled by the wavelet (R ↓), and decreasing dominant frequency of
the wavelet (ω0 ↓). Thus increasing S corresponds to increasing spherical effects.

We can also show that in the limit of decreasing S the weighting function must act
as a delta function, i.e., limS→0 Wn(θ, θi, S) = δ(cos θ − cos θi). (See Appendix A for
details.) In this limit then the normalized spherical-wave re�ection coef�cient approaches
the plane-wave Zoeppritz coef�cient (see equation 21).

Calculation examples

The Wn expression has been implemented for numerical computation (MATLAB and
Java). We present computational results below for 1 ≤ n ≤ 8, as this range is generally
adequate to model the frequency content of a seismic wavelet.

Cross-sections of W4 are shown in Figure 2 below. The function is peaked for values of
θ near θi, and becomes narrower at larger angles, corresponding to longer raypaths. These
facts accord with the delta function limit described above. Thus the cos θ-integration in
equation 21 can be restricted to a compact range.

The result of equation 21, the normalized spherical re�ection coef�cient, is illustrated
in Figure 3 (dotted line). This is compared to the plane-wave re�ection coef�cient in the
integrand whose absolute value is shown as a solid line. Thus the plane-wave re�ection
coef�cient (solid line) is weighted by functions such as those in Figure 2 and integrated
to yield points on the normalized spherical-wave re�ection coef�cient curve (dotted line).
Both the amplitude and phase of the spherical wave results differ strongly from the plane-
wave result near the critical angle. This is observed even at 2000 m (Haase, 2004a). Thus
spherical waves should be considered for any quantitative treatment of supercritical re�ec-
tions.

Table 1. Two-layer, elastic interface model employed in calculations.

Density P-wave velocity S-wave velocity
(kg/m3) (m/s) (m/s)

Layer 1 2400 2000 879.88
Layer 2 2000 2933.33 1882.29

Details of implementation

Two types of calculation are carried out in this study, the fully numerical approach of
Haase (2004a), and the semi-analytical method of equation 21, in which the frequency
integration has already been performed analytically.

To carry out the remaining numerical integration in equation 21 it is convenient to
replace S = α1/(Rω0) with Sz ≡ S/ cos θi, where Sz = α1/[(z + h)ω0], or, for the case of
h = z which we will consider here, Sz = α1/(2zω0). S depends on the angle of incidence,
while Sz depends only on the model and the wavelet, and is thus constant for a given
re�ection coef�cient curve. It is also convenient to deal with f(= ω/2π) rather than ω.
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FIG. 2. Some of the weighting functions (i.e., equation 17) used in evaluating equation 21, the
spherical-wave re�ection coef�cient, for a given angle of incidence, θi. The wavelet is of the form
of equation 3, with n = 4, ω0 = 200 s−1 (or f0 ≡ ω0/2π ≈ 31.83 Hz), α1 = 2000 m/s, and z = h =
500 m, so that S = 0.01. The weighting functions shown here are for incidence angles of 15◦, 55◦,
and 85◦. In each case both the real component (solid line) and the imaginary component (dashed
line) of the function are peaked near the angle of incidence.
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FIG. 3. Comparison of the a) magnitude and b) phase of plane wave and spherical-wave re�ection
coef�cients for the Class I AVO parameters of Table 1. Other parameters are as given in Figure 2.
The symbol θc denotes the critical angle. Values of the spherical-wave re�ection coef�cients at
θi = 15◦, 55◦, and 85◦ were calculated using the weighting functions displayed in Figure 2.
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Our inputs therefore consist of 1) earth parameters, 2) angle of incidence, 3) n and Sz, and
4) parameters controlling the numerical integration. For a simple scheme, the numerical
integration parameters consist of the grid width and the upper cutoff for the imaginary path
(which formally is i×∞). In the calculations below we have chosen |∆(cos θ)| = 0.001 and
(cos θ)max = 0.1i, unless otherwise noted. Neither decreasing the grid width nor increasing
the cutoff produces any visible change to the plots.

TESTING OF THE METHOD

To be of value, this new method of calculating the spherical-wave re�ection coef�cient
(equations 21-26) must be both accurate and ef�cient. In this section we estimate the effect
of each of the three approximations employed in the derivation, while timing measurements
will be used to estimate the ef�ciency.

Description of model

Table 1 contains earth parameters specifying a Class I AVO system with a critical point
at ∼ 43◦. Following Haase (2004a) we also employ depths of z = h = 500 m, and an
overburden P-wave velocity of α1 = 2000 m/s (see Table 1 above), unless otherwise noted.
This information, together with f0, completely speci�es Sz, which then determines the
deviation from plane wave behavior for a Rayleigh wavelet of order n.

Test of arrival time approximation

Aside from numerical errors, the arrival time approximation is the only source of dif-
ference between this method and the fully numerical method of Haase (2004a), if the same
wavelet is used in both methods. Figure 4 below displays the difference |Rt−max

PP | − |Rt−ray
PP |

when a wavelet of the Rayleigh form (equation 3) is used in both the numerical and semi-
analytical methods. The fully numerical approach (Haase, 2004a) estimates the arrival
time from the maximum of the trace envelope, while the semi-analytical method assigns
the arrival time t = R/α1. The largest deviation occurs just past the critical angle, where
the re�ected wave and head wave are separating from one another. Even here though the
difference is small, and we conclude that this approximation introduces negligible error.

Test of travel path approximation

This approximation is present in the method of Haase (2004a) as well. It arises from ex-
tracting the component of the gradient along the raypath, and neglecting any displacement
perpendicular to it. To estimate the effect of this approximation, the numerical procedure
of Haase (2004a) was modi�ed to extract only the perpendicular component instead of the
parallel component. This "perpendicular" re�ection coef�cient is shown in Figure 5. The
largest value again occurs just past the critical angle, and is again negligibly small. As with
the travel time approximation, the errors appear in the region where re�ecting and head
waves are separating.
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FIG. 4. The difference between spherical-wave re�ection coef�cients calculated by different meth-
ods. One method calculates the zero-phase arrival time by locating a maximum in the trace. The
other method calculates the arrival time from ray theory with t = R/α1. The largest differences
occur just past the critical angle, as re�ected waves and head waves are separating to become
distinct entities. Even here the differences are small (note the vertical scale). When re�ection co-
ef�cient curves for the two methods are plotted together, they are both similar in appearance to the
dotted line in Figure 3a, and are nearly indistinguishable from one another.
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FIG. 5. The spherical-wave re�ection coef�cient calculated using only the displacement perpendic-
ular to the raypath. All other calculations in this study use the component parallel to the raypath.
This �gure provides a measure of the error of the parallelity assumption. The calculation was
performed using a 5/15-80/100 Hz Ormsby wavelet with z = 500 m. Note the vertical scale.
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Test of wavelet approximation

There are no further approximations in this method if the Rayleigh wavelet (equation 3)
is used in modeling. Indeed this is one reason, among others (Hubral and Tygel, 1989),
to increase the use of Rayleigh wavelets in exploration geophysics. However, the zero-
phase Ormsby and Ricker wavelets are currently more widely used, and it is of interest
to know how well Rayleigh re�ection coef�cients will represent the re�ection behavior of
these more common wavelets. We show that there are simple prescriptions for f0 and n
which allow the zero-phase Rayleigh wavelet to be used to mimic the re�ection behavior
of Ormsby and Ricker wavelets.

Fundamental wavelet parameters

It is �rst useful to reduce the number of parameters used to describe wavelets. It was
noted in the Theory section that the Rayleigh re�ection coef�cient curve depends on only
two variables, n and Sz, where Sz = α1/(4πzf0). It can be shown, empirically at least,
that the Ormsby curve depends primarily on two variables as well, and that the Ricker curve
depends on only one variable.

Figure 6 displays the Ormsby re�ection coef�cient curve for six models in which Sz =
1/50, where Sz ≡ α1/(4πzf) and f is the average frequency of the Ormsby wavelet
(see Appendix B). For the most part the six lines are roughly coincident, showing that
the average frequency is a fundamental parameter describing re�ectivity of the Ormsby
wavelet. (Note that in the case of curves for which the value of α1 differs from that in
Table 1, all other velocities have been scaled as well so that the plane-wave Zoeppritz
coef�cients are unchanged.) Oscillations are present around the critical angle, which is
typical of Ormsby wavelet calculations (Haase, 2004a), and the inset shows these in greater
detail. There the curves are grouped into three pairs of strongly coincident lines. Inspection
of the wavelet de�nitions in the legend reveals that each pair possesses a common value
of (f1 + f2)/(f3 + f4), which we represent by the symbol Br. Thus the Ormsby Rsph

PP is
primarily determined by Sz and Br.

The Ormsby wavelet is de�ned by four frequencies, and two combinations of these,
the average frequency and the upper-to-lower band edge ratio, have been described. The
remaining information pertains to de�nition of the tapers at each band edge. Figure 7
displays Rsph

PP for three Ormsby wavelets which all have similar Sz and Br but which differ
in their taper de�nitions. The �rst is a 10/10-90/90 boxcar �lter, the second is a more
conventional linearly tapered 5/15-80/100 Ormsby wavelet (also displayed in Figure 6),
and the third is the same as the second but with a cosine taper. There is little difference
among the resulting re�ection coef�cient curves, so we conclude that the taper de�nition
has little in�uence on Rsph

PP for the Ormsby wavelet.

The zero-phase Ricker wavelet has only one adjustable parameter, f0, and is given as

wRicker(f) = f 2 exp
[−(f/f0)

2
]
. (27)

It has been criticized in some quarters (Hosken, 1988), but is still in common use. Calcu-
lations (not shown) demonstrate that the Ricker Rsph

PP is essentially dependent only on Sz
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FIG. 6. The six Ormsby wavelet spherical-wave re�ection coef�cient curves shown in this �gure all
possess a common value of Sz = α1/(2zf), namely, 1/50. Note that they track each other closely
over most angles. In cases when α1 varies from the value in Table 1, all other velocities have been
similarly scaled so that the underlying plane-wave re�ection coef�cient curve is unchanged. The
inset shows the critical angle region where most variation occurs, and the six curves separate into
three pairs of lines. Each pair is characterized by a common value of Br ≡ (f1 + f2)/(f3 + f4), and
thus the variables Sz and Br control the deviation of the spherical-wave re�ection coef�cient from
its plane-wave analogue.
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FIG. 7. Three spherical-wave re�ection coef�cient curves calculated at 500 m depth from Ormsby
wavelets with similar bandwidths and average frequencies, namely, a linearly tapered 5/15-80/100
wavelet, a cosine tapered 5/15-80/100 wavelet, and a 10/10-90/90 boxcar wavelet. The axis limits
have been adjusted to focus on a region in which there are perceptible differences. Even here the
differences are small, suggesting that spherical-wave re�ection coef�cients are insensitive to the
precise edge de�nitions of Ormsby wavelets.
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(or equivalently on Sz = (
√

π/2)Sz, as shown in Appendix B). By "essentially" we mean
that there is deviation on the order of 10−3 between similar curves. It is not clear if this
is a theoretical or numerical difference. For practical purposes in exploration seismology
though, such curves are identical.

Our test of the wavelet approximation can now be phrased as follows: Given values of
S

Ricker
z , or of Br and S

Ormsby
z , can we �nd optimal values of n and SRayleigh

z such that the
Rayleigh re�ection coef�cient curve gives a good approximation to the Ricker and Ormsby
curves.

Selecting Sz

The obvious choice would seem to be to select Sz such that S
Rayleigh
z = S

Ormsby or Ricker
z .

However there are other choices one might contemplate. Using the Ormsby wavelet f1/f2-
f3/f4 = 5/15-80/100 Hz, Figure 8 illustrates three representation possibilities for the case
of n = 4. First, it is approximated by an f0 = 23 Hz Rayleigh wavelet. This primarily
attempts to reproduce the lower frequencies, as these might be assumed to be more impor-
tant in reproducing spherical-wave effects. Second, it is approximated by a 40 Hz wavelet,
which matches the 50 Hz average frequency of the Ormsby wavelet. (Details of this cal-
culation are given in Appendix B.) This choice also matches values of Sz as α1 and z
are unchanged. Finally, it is represented by a 70 Hz wavelet. This represents the upper
frequencies of the Ormsby wavelet, and is also a closer match of bandwidth.

Figure 9 below compares the re�ection coef�cient curve obtained using f0 = 23, 40,
or 70 Hz with that obtained from a numerical calculation using the Ormsby wavelet. This
illustrates that setting f0 equal to the average frequency of the target wavelet provides
a good qualitative representation of the re�ectivity, even though the wavelets themselves
appear substantially different.

Calculations (not shown) also con�rm that matching Sz provides a good description of
the Ricker wavelet re�ectivities, although matching values of Sz is reasonable as well.

Selecting n

Selecting Sz is the principal key to representing an arbitrary wavelet's re�ection coef-
�cient by that of a Rayleigh wavelet, but the parameter n can still be used to improve the
representation.

An example of choosing the optimal value of n is shown in Figure 10. This �gure
displays re�ection coef�cient curves for a Ricker wavelet and for eight Rayleigh wavelets,
with n = 1, . . . , 8. All nine wavelets share the same value of Sz. Choosing the best value
of n by inspection is somewhat subjective, so the mis�t for each n is calculated by an L1
norm (the sum of absolute deviations,

∑60◦
i=20◦ |ROrmsby

PP (θi) − RRayleigh
PP (n; θi)|) for a region

around the critical angle. This measure assigns the optimal value of n = 5, although it is a
shallow minimum, and n = 4 and 6 are nearly as suitable.

Would this value of n be optimal in all cases? Some variables that could affect the

CREWES Research Report � Volume 18 (2006) 17



Ursenbach et. al

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

frequency [Hz]

w
av

el
et

 a
m

pl
itu

de

5/15−80/100
ν

0
=23 Hz

ν
0
=40 Hz

ν
0
=70 Hz

FIG. 8. An Ormsby wavelet and three Rayleigh wavelets (equation 3 with n = 4) which are used
to represent it. Two of the wavelets focus on representing the lower or upper Ormsby frequencies.
The middle wavelet has the same average frequency as the Ormsby wavelet.
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FIG. 9. Four re�ection coef�cient curves calculated at 500 m for the wavelets in Figure 8. The
re�ection coef�cient of an Ormsby wavelet is best represented by a Rayleigh wavelet bearing the
same average frequency.
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FIG. 10. The dark line is the spherical re�ection coef�cient curve for the 20 Hz Ricker wavelet at
500 m depth. The remaining curves are for Rayleigh wavelets. Each has a different value of n, but
all have the same average frequency as the Ricker wavelet.
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choice of n are Sz, Br, choice of Ricker vs. Ormsby, and even the earth parameters de-
termining the plane-wave re�ection coef�cients. We have carried out a number of similar
exercises to that of Figure 10 in order to explore dependence of n on these variables. The
results are shown in Table 2. The table makes reference to Models I, II, and III. Model I is
that given in Table 1. Models II and III are identical to Model I except that ρ2 = 2900 kg/m3

in Model II and (ρ2, α2) = (2900 kg/m3, 2550 m/s) in Model III. As shown in Figure 11,
these parameter changes yield signi�cant differences in the plane-wave re�ection coef�-
cients, and thus serve as a strong test of the dependence of n on earth parameters. As
shown in Table 2, the optimal value of n depends primarily on the choice of wavelet and,
in the case of Ormsby wavelets, on Br as well. Based on these and other calculations, we
recommend the choice of n = 5 for representing a Ricker curve, and n = 26Br (rounded)
for representing an Ormsby curve. One should recall however that the quality of represen-
tation is primarily determined by the choice of Sz, and the choice of n simply re�nes that
representation.
Table 2. The optimal values of the Rayleigh wavelet parameter n used for �tting Ricker and Ormsby
wavelets with Sz varying over two orders of magnitude, and for models with widely varying plane-
wave re�ection coef�cient curves. Models I, II and III are de�ned in Figure 11. It is evident that n is
only weakly dependent upon Sz and on the choice of earth model.

Wavelet Optimal n value for Rayleigh Wavelet
Name Br Sz Model I Model II Model III
Ricker - .01 5 5 5

.1 5 5 5
1 5 5 ≥ 8

Ormsby 1/9 .01 3 4 3
.1 3 3 3
.5 3 3 4

Ormsby 1/4 .01 7 ≥ 8 7
.1 6 6 6
.5 6 6 ≥ 8

To summarize, one can observe from Figures 9 and 10 that, given appropriate selections
of Sz and n, Rayleigh re�ection coef�cient curves provide a strong qualitative estimate of
Rsph

PP for Ormsby wavelets and a nearly quantitative estimate for Ricker wavelets.

Ef�ciency

Table 3 displays times required to carry out the calculation of a single point for a re-
�ection coef�cient curve. Note that the timing of the Rayleigh wavelet calculations by the
semi-analytical method depend only on Sz and n, while the Ricker and Ormsby wavelet
calculations, based on the method of Haase (2004a), can have different timing values for
the same value of Sz, depending on the individual de�nitions of α1, z and f(ω). Thus these
numbers represent a rough sampling. It is also interesting that the execution time of one
method increases with Sz, and the other decreases. This emphasizes the fact that the two
calculation methods involve substantially different approaches.
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FIG. 11. Three different plane-wave re�ection coef�cient curves. The solid curve is for the earth
parameters of Table 1. The dotted curve is the same except that ρ2 = 2900 kg/m3. The dashed
curve is also for the same parameters as in Table 1 except that now ρ2 = 2900 kg/m3 and α2 =
2550 m/s. They are intended to display widely varying Class I behaviors in order to see whether the
optimal value of n is model-dependent. Results collected in Table 2 suggest it is not.
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Table 3. Times in seconds required to calculate a point of the spherical-wave re�ection coef�cient
curve. The Ricker and Ormsby results are for a FORTRAN77 code, the Rayleigh results are for a
Java applet.

Wavelet Sz = .01 Sz = .1 Sz = .5 or 1
Ricker 67.5 4.9 .15
Rayleigh, n = 5 0.058 0.058 0.071
Ormsby, Br = 1/9 71 .45 .16
Rayleigh, n = 3 0.032 0.032 0.038

It is clear that Rsph
PP (θi) calculations based on equation 21 are fast enough to be executed

interactively. They are a promising basis for large scale AVO modeling or inversion of
seismic data. In addition, if a calculation has been previously executed, and one wishes
to recalculate using a different value of ∆α/α, ∆β/β, ∆ρ/ρ, or β/α, it is only necessary
to recalculate the plane-wave RPP, as Wn will be unchanged and a stored version can be
used. This further decreases the calculation time by another two orders of magnitude. This
ef�ciency has been captured in a Java applet implementation of this method, publicly avail-
able at www.crewes.org (via the "Explorers" link). In this application, changing a variable
that requires a recalculation of Wn typically requires a few seconds of delay, while chang-
ing a variable that requires only recalculation of RPP results in an instantaneous response.
This extra ef�ciency is a unique feature of the equation 21 method of calculating Rsph

PP , and
would be of considerable value in AVO inversion.

CONCLUSIONS

We have shown that, for the Rayleigh wavelet, one can obtain a simpli�ed expres-
sion for spherical-wave re�ection coef�cients. These re�ection coef�cients show behavior
similar to that obtained from more traditional wavelets. Using simple prescriptions, they
can be used to qualitatively represent Ormsby wavelets and quantitatively represent Ricker
wavelets. Similar principles would allow them to represent other wavelets as well. These
calculations are nearly exact, with the main restriction being the form of the wavelet.

This new approach is admittedly not as �exible as the numerical approach of Haase
(2002, 2003, 2004a), which can not only be easily extended to other wavelets, but to
converted waves Haase (2004a), viscoelastic media (Haase, 2004b), and anisotropic me-
dia (Haase and Ursenbach, 2005) as well. However the case of PP-re�ections in isotropic,
elastic media is central to exploration seismology. Furthermore, the unique ef�ciencies of
this method make it feasible to implement in interactive software, and suggest that it is a
promising method for use in supercritical AVO modeling. Spherical-wave re�ection coef-
�cient calculations, which formerly have been used only in special instances, can now be
implemented routinely.
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APPENDIX A

We consider the limit of decreasing S for equations 21-26.

First we consider the cos θ 6= cos θi. In this case B, C, τ and T are all non-vanishing in
the limit. Thus the Sn+2 factor will cause Wn to vanish.

Next we consider the case cos θ = cos θi 6= 0. Again C and T are non-vanishing, but τ
vanishes as

√
S, so that BPn(T/τ) and Pn+1(T/τ) diverge as (1/

√
S)n−1 and (1/

√
S)n+1

respectively. The former of these can be neglected, and Wn will then diverge as 1/
√

S.

Finally we consider the remaining case, cos θ = cos θi = 0. Setting this condition and
then taking the limit of S → 0 yields −i(n + 2)/(nS) which diverges as 1/S.

The real and imaginary components of Wn are bounded by the envelope. Thus, because
the real part is normalized to 1 and the imaginary part to zero, the weighting function must
act as a delta function in the limit of vanishing spherical effects, i.e., limS→0 Wn(θ, θi, S) =
δ(cos θ − cos θi).

APPENDIX B

The average frequency of a wavelet is given by

f =

∫∞
0

fw(f)df∫∞
0

w(f)df
. (28)

Applying this to the wavelet de�nitions in equations 3 and 27 yields

fRayleigh =
n + 1

n
fRayleigh

0 , (29)

fRicker =
2fRicker

0√
π

, (30)

while application to the Ormsby wavelet gives

fOrmsby =
(f 2

1 + f1f2 + f 2
2 )− (f 2

3 + f3f4 + f 2
4 )

3(f1 + f2 − f3 − f4)
. (31)

Mimicking the average frequency of the target wavelet can then be accomplished by solving
for fRayleigh

0 from fRayleigh = fRicker or from fRayleigh = fOrmsby.

The quantity Sz is de�ned as α1/(zf), so that if α1 and z are held constant, then match-
ing f is equivalent to matching Sz.
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