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ABSTRACT

The GPSPI algorithm uses a phase shift that is a high-frequency approximation to the
exact solution: the square-root Helmholtz operator symbol. The square-root Helmholtz
operator symbol dramatically changes character between high- and low-frequency limits,
while the GPSPI phase shift does not. A frequency-dependent smoothing of the velocity
model (and therefore the phase shift) is used to approximate the character change of the
square-root Helmholtz symbol, and is implemented via the spatial resampling within the
FOCI algorithm. This results in heavy smoothing of the phase shift at low frequencies, and
virtually no smoothing at higher frequencies. The frequency-dependent smoothing results
in an image of much higher quality than the image generated using the usual GPSPI phase
shift.

INTRODUCTION

The GPSPI algorithm (Margrave and Ferguson, 1999) provides a highly-accurate prestack
depth migration algorithm. This algorithm depends upon a numerical implementation of
the “infinitesimal extrapolator”,
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Here Ψ represents the wavefield as a function of horizontal position x, vertical depth z,
depth-step Δz, and temporal frequency ω. T is the infinitesimal extrapolation operator
characterized by symbol α, where α is a function of x, horizontal wavenumber kx, ω, and
z. φ is the wavefield Ψ after Fourier-transforming from x to kx. In this case, T extrapolates
the wavefield from depth z to depth z + Δz. For a full description of this algorithm and its
efficient implementation, see Margrave and Ferguson (1999) and Margrave et al. (2006).

THE SQUARE-ROOT HELMHOLTZ OPERATOR SYMBOL

Fishman (2002) identifies the term
√

ω2/v(x)2 − k2
x in equation 2 as the limiting form

of a high-frequency approximation to the square-root Helmholtz operator symbol (i.e. an
“infinite-frequency symbol”). Figure 1 shows the real part of the infinite-frequency sym-
bol as used in GPSPI. This symbol is calculated for a velocity model consisting of three
blocks of constant velocity. On the left, velocity v1 is relatively high; in the middle, ve-
locity v2 is relatively low; and on the right, velocity v3 is moderate. Figure 2 shows an
ensemble of exact square-root Helmholtz operator symbols for high, moderate, low, and
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FIG. 1. Real part of the infinite-frequency square-root Helmholtz operator symbol for a velocity
model with blocks of constant velocity. Adapted from Fishman (2002). This is the symbol as used
in GPSPI.

zero frequency, also due to Fishman (2002). These symbols have been rotated to show the
detail within the symbol. At high frequency, the symbol appears to be quite similar to the
infinite-frequency symbol. The added ripple features capture the physics of the trapped
horizontal modes – effectively the multiple horizontal reflections. The symbol at moderate
frequency retains many of these features, but appears somewhat smoothed compared to the
higher frequency symbol. The low-frequency symbol appears heavily smoothed, and the
zero-frequency symbol shows only a single effective velocity. In an intuitive sense, these
symbols are demonstrating that the various frequencies “see” different media. The highest
frequencies are affected by all scales of structure within the velocity model, while the low-
est frequencies see only the largest-scale overall velocity – any finite velocity changes are
lost and only the background average velocity appears.

APPROXIMATING SYMBOLS

Although the symbol calculations given by Fishman (2002) are, at this point, far too
computationally expensive for practical migration purposes, approximations may be con-
sidered. Specifically, we choose to preserve the apparent smoothing displayed by the
symbols at various frequencies. Figure 3 again displays a three-block velocity model sym-
bol at infinite frequency. Figure 4 shows this same symbol calculated with a velocity model
that is smoothed with a smoothing length determined by the wavelength of low-frequency
waves. The optimal method for smoothing remains an open problem, and at this point
smoothing is done purely empirically.

TESTING

Testing of smoothed vs. unsmoothed symbols was performed using the FOCI (Mar-
grave et al., 2006) method of GPSPI migration. The smoothing was accomplished using the
spatial-resampling portion of the FOCI method. Although this spatial resampling was orig-
inally developed to address numerical stability and efficiency concerns, it effectively does
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FIG. 2. Ensemble of real parts of the square-root Helmholtz operator symbols for a velocity model
with blocks of constant velocity. Adapted from Fishman (2002).

FIG. 3. Real part of the infinite-frequency symbol for the three-block velocity model.
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FIG. 4. Real part of the low-frequency symbol approximation (via smoothing of the velocity model)
for the three-block velocity model.

FIG. 5. The Marmousi velocity model. Velocities range between approximately 1500m/s and
5500m/s.

perform a frequency-dependent smoothing of the velocity model. The smoothing method
within spatial resampling is a simple spatial averaging. Migration tests were performed
using synthetic data from the Marmousi model (Figure 5).

The FOCI spatial resampling typically decomposes the data into on the order of 10
frequency bands, ranging from low frequency (≈ 4 − 6Hz) to high frequency (≈ 42 −
60Hz). The velocity model is then smoothed with a spatial averaging that is characteristic
for each frequency band.

Migrations were run both with and without spatial resampling. As the FOCI algorithm
requires spatial resampling for stability and efficiency, special care was taken to ensure that
these features were preserved in the unsmoothed case. Specifically, the image calculated
using smoothed symbols had a final operator length of 31 points. In order to preserve
stability and fidelity of the operator in the absence of the spatial resampling, the operator
length had to be scaled in order to provide the same operator control within the wavelike
region of propagation for each frequency band. Therefore, for the lowest frequency block, a
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a) b)

FIG. 6. Images of the Marmousi model generated a) without smoothing of the symbol and b) with
smoothing of the symbol. The image generated with the smoothed symbol is clearly far superior to
the image generated with the infinite-frequency symbol.

final operator length of more than 200 points was required. For a full description of spatial
resampling and the division of the data into frequency bands, see Margrave et al. (2006).

The resulting images are shown in Figure 6. The image calculated with the smoothed
symbol is clearly significantly better than the image calculated with the infinite-frequency
symbol.

In order to determine the frequency-dependence of the difference in image quality, the
concept of “residual” as defined by Hogan and Margrave (2006) was used. The smoothed-
and unsmoothed-symbol images were broken into frequency bands 10 Hz wide, centred
every 5 Hz from 5 to 55 Hz. 11 new images were generated, each image consisting of the
unsmoothed-symbol image with one frequency band replaced by the respective frequency
band from the smoothed-symbol image. For example, the first image was generated with
the 5-15 Hz band from the smoothed-symbol image, along with all other 10 bands from the
unsmoothed-symbol image. Each of these images was compared with an image composed
of all 11 bands of the unsmoothed-symbol image. The residuals are plotted in Figure 7.

These residuals indicate that the smoothing of the symbol had the most effect on the im-
age in the lower frequencies, and had very little effect on higher frequencies. This matches
our expectations that the biggest differences in the symbol will be found in the lower fre-
quency bands and so the biggest improvement in overall quality will be found there as
well.

CONCLUSIONS AND FUTURE WORK

The frequency dependence found in the exact square-root Helmholtz operator symbol
is striking and leads to symbols that are dramatically different from the infinite-frequency
symbols that are used in standard GPSPI migration. Although these exact operator symbols
are extremely difficult to compute, a qualitative and possibly naïve approximation to these
symbols based on frequency-dependent smoothing of the underlying velocity model results
in an image that is far superior to one that is calculated with just the infinite-frequency
symbol.
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FIG. 7. Determination of effectiveness of symbol smoothing as a function of frequency. Lower
residuals indicate that the smoothing of the symbol resulted in a change in quality of the overall
image, while a residual of 1 indicates that the smoothing had little to no effect in this region.

The FOCI algorithm may already be implemented with a simple but effective form of
symbol smoothing: spatial resampling following Margrave et al. (2006). Therefore, in ad-
dition to providing greater computational efficiency and numerical stability to the imaging,
this spatial resampling also adds somewhat more accurate physics to the wavefield extrap-
olation and therefore a better image.

We are currently working to understand how to optimally approximate the exact square-
root Helmholtz symbol in order to maximize the image quality.
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