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Finite difference – finite integral transform hybrid techniques: 
the coupled P-SV problem in a radially symmetric vertically 
inhomogeneous medium 

P.F. Daley 

ABSTRACT 
The hybrid finite difference – finite integral transform method is developed for the 

VP S−  wave propagation problem in a radially symmetric vertically inhomogeneous 
medium. Apart from the development of the finite difference analogues of the 
transformed equations of motion, a number of numerical considerations are addressed. As 
in most problems where numerical methods are employed in the solution, there are 
several areas that are given special attention to indicate how to improve run times and 
accuracy. Often this method of problem solving is referred to (erroneously) as the 
pseudo-spectral method. The solution approach described here is more general in that 
uniformly sampled grids of any spatial dimension are not required. It may be correct to 
say that the pseudo-spectral method is a subset of what is discussed here. 

Presentation of the theory, with consideration given to finite Hankel transform theory, 
the development of finite difference analogues, stability analysis and numerical 
considerations to exploit the highly parallel nature of the problem are included. 
Numerical results for a range of geological models, for both amplitude versus offset 
(AVO) and vertical seismic profile (VSP) applications are presented. 

INTRODUCTION 
This method is often referred to as the pseudo-spectral method, but due to the 

extensive work done in the specific area considered here by B.G. Mikhailenko and A.S. 
Alekseev it is sometimes referred to, in seismic applications as the Alekseev-Mikhailenko 
Method (AMM). However, much of their work is relatively physically inaccessible and a 
considerable amount of the more significant contributions are in Russian. To maintain a 
citation data base of reasonable size and relevance, only a few noteworthy references will 
be given as any further pursuit of the literature may be obtained from the following cited 
works within the context of that part of the total problem that a reader may require more 
information regarding. This shortened list includes: Gazdag (1973, 1981), Kosloff and 
Baysal (1982), Alekseev and Mikhailenko (1980), Mikhailenko and Korneev (1984) and 
Mikhailenko (1985). The last of these is possibly the most general, dealing with 
numerous types of seismic wave propagation. 

The medium type that is considered here is a radially symmetric, vertically 
inhomogeneous medium, which precludes the presence of lateral inhomogeneities, for 
AVO and VSP applications. The elastodynamic equations relevant to this geometry are 
investigated for the coupled VP S−  particle displacement. Removal of the radial 
coordinate by a Hankel transform greatly reduces the physical resources (memory) 
requirements. Computation time is of the order of a 2D finite difference problem. 
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However, 3D geometrical spreading is integral to the method so that this problem would 
be referred to as a 2.5D numerical experimentation. 

THEORETICAL DEVELOPMENT 

General Theory 

Consider the problem of coupled VP S−  wave propagation in a radially symmetric (no 
lateral inhomogeneities), vertically inhomogeneous half space. The equations of motion 
are defined by the elastodynamic equation (Aki and Richards, 1980)  
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where 

 ( ) ( ), , ,r zr z t u u≡ =u u  (2) 

is the vector particle displacement, r the radial coordinate, z the vertical coordinate, t is 
time, ,λ μ  are the elastic parameters of the medium and ρ  is the density, all three of 
which may be dependent on z. There is no dependence on the coordinate θ  in a 
cylindrical, ( ), ,r zθ , coordinate system. 

The problem is solved subject to the initial conditions 
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and the free surface boundary conditions that are required to be satisfied are 
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that is, the normal stress and shear stress are zero at the free surface. 

The two typical types of sources, ( ), ,r z tF , used in seismic applications are (B.G. 
Mikhailenko, 1980): 

1. Vertical point force : 

 ( ) ( ) ( ) ( ), ,
2 s

r
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δ

δ
π

= − zF n . (5) 

  where zn  is a unit vector in the z (vertical downwards) direction. 
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2. Explosive point source of P waves: 

 ( ) ( ) ( ) ( ), ,
2 s

r
r z t z z f t

r
δ

δ
π

⎛ ⎞
= ∇ −⎜ ⎟
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In the above, ( )δ ξ  is the Dirac delta function and ( )f t  is some band limited source 
wavelet, about which more will be said later. 

Assuming an explosive point source of P waves the radial, ( ), ,ru r z t , and vertical, 
( ), ,zu r z t , components of particle displacement for the problem specified are given by 
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and 
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where ( )zλ λ= , ( )zμ μ=  are the depth dependent elastic parameters and ( )zρ ρ=  is 
the density. 

In terms of ( ), ,ru r z t  and ( ), ,zu r z t , the expressions for the normal stress and shear 
stresses, which are zero at the free surface have the form 

 ( )2r r z
zz

u u u
r r z

σ λ λ μ∂ ∂⎡ ⎤= + + +⎢ ⎥∂ ∂⎣ ⎦
 (9) 

 r z
rz

u u
z r

σ μ ∂ ∂⎡ ⎤= +⎢ ⎥∂ ∂⎣ ⎦
 (10) 

Introducing the finite Hankel integral transforms and the transformed vector 
designation ( ) ( ) ( )( ), , , , , , , ,i i i ik k z t S k z t R k z t=G � �  has 
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where ik  and ik�  are the roots of the transcendental equations 

 ( )0 0iJ k r =�  (13) 

and 

 ( )1 0iJ k r = , (14) 

respectively. Using the two formulations of the of Hankel transforms discussed in 
Appendix A, it may be shown that both of the inverse series summations may be 
accomplished using only the roots of one of the Bessel function transcendental equation, 
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Thus, both inverse series summations may be taken over the roots of one rather than two 
transcendental equations and as a consequence, ( ) ( ) ( )( ), , , , , , ,i i ik z t S k z t R k z t=G . The 
matter of what, numerically, constitutes an infinite number of terms in the inverse series 
summations will be addressed in due course. It will be shown that an earlier assumption 
that the source wavelet be band limited is significant in this determination. As the only 
spatial direction in which a finite difference is used is the z direction, an economical 
manner to account for spurious reflections from the boundary at z a=  is to introduce 
damping conditions in the vicinity of the lower z boundary of the form ( )z R tγ ∂ ∂  and 

( )z S tγ ∂ ∂ . A safe estimate for the length of this zone is of the order of 2 wavelengths 
(WL).(B.G. Mikhailenko, 1980, and equation (34)). Alternatively, the explicit exponential 
damping discussed in Reynolds (1978) and Cerjan et al. (1985) may be used in the 
vicinity of the boundary at maxz z= , where maxz  is the finite maximum depth of the model, 
with similar results. The well known boundary damping methods discussed in Clayton 
and Enquist (1977) may also be considered. 

Applying the appropriate Hankel transforms to equations (7) and (8) results in: 
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The development of a finite difference analogue for terms of the form  

 ( ) ( ), ,ik z t
z

z z
ψ

ζ
⎡ ∂ ⎤∂
⎢ ⎥∂ ∂⎣ ⎦

 (19) 

is given in Appendix B  

If it is assumed that the elastic parameters have no spatial dependence, that is they are 
homogeneous throughout the model or some part thereof, the Hankel transformed 
equations (17) and (18) take the simplified forms given below. For convenience, it is 
assumed that the first two grid points in z, at the free surface are of this form. 
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The Hankel transformed shear and normal stresses required at the free surface as 
boundary conditions are 

Normal stress: 
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and 

Shear stress: 
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The finite difference analogues for equations (23) and (25) may be written as 
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Free Surface Finite Difference Analogues 
Using equations (26) and (27), equations (20) and (21) for the horizontal and vertical 

components of particle displacement at the free surface ( )0z =  may be determined. In 
the following, the spatial and temporal increments are zΔ  and tΔ .  

The finite difference analogue for the horizontal component of particle displacement at 
the free surface may be written as 
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Continuing with the vertical component of particle displacement yields, at the free 
surface, the finite difference analogue 
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General Point Finite Difference Analogues 
Horizontal component: 
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Vertical component: 
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Various numerical considerations 
There are numerous minor questions that also need to be discussed. A few of the more 

significant ones are briefly addressed below. 

• Numerical implementation of the operation ( )( )0" "z zδ∇ − . The source term 

( ) ( )( )j jF z z z zδ− = ∇ −  may be approximated by  

 
( ) ( ) ( )1 1 .

2
j j jz z z z

z z

δ δ δ+ −
⎡ ⎤∂ − −⎣ ⎦ ≈

∂ Δ
 (32) 

Possibly a more numerically correct way of accomplishing this is to consider the 
approximate relation 
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 ( ) ( ) ( )20
0exp

o

j j j

n

mF z z z z n z zδ
π

→∞

⎡ ⎤− = − ≈ − −⎢ ⎥⎣ ⎦
 (33) 

  and proceed using this formulation. 

• Number of points per wavelength ( )WL . As there are several ways in which a 
WL  has been defined, this topic will clarified first. Given that minv  is the 
minimum velocity encountered in the z – direction, where both the Pv  and Sv  
velocity values are considered in this determination, and maxf  is that frequency 
beyond which the spectrum of the band limited source is zero (numerically), 
the definition of a WL  used here is 

 min

max

vWL
f

= . (34) 

As the spatial finite difference analogues used here are of second order accuracy, at least 
10 points WL  would be required to keep grid dispersion to a minimum. In the problem 
considered here, where the vertical and horizontal components of particle displacement as 
well as all required elastic parameters need only to be specified at a sequence of depth 
points (one spatial dimension), the use of two to four times this minimum number does 
not cause any major problems in allocating space for the arrays required during the 
computation process. When compared to schemes employing finite difference methods, 
this ability to increase the number of points per WL  in this manner allows for a simple 
manner to perform an analysis of grid dispersion versus points per WL . 

CONCLUSIONS 

The theory and development of finite difference analogues for VP S−  wave 
propagation in a plane parallel layered model has been presented. The radial coordinate 
was removed using a finite Hankel transform prior to implementation of finite difference 
process. What results are a coupled system of finite difference equations in only depth 
and time. The radial component is recovered by applying an inverse Hankel transform 
summation, which although infinite, may be truncated if a band limited source wavelet is 
used. The synthetic traces produced using this method have 3D spreading and the amount 
of computer resources is reduced considerably as the vertical and horizontal components 
of particle displacement as well as all required elastic parameters need only to be 
specified at a sequence of depth points – one spatial dimension as opposed to two.  

The finite difference analogues given are accurate to second order in both time and 
space (depth). The analogues for a surface point as well as general points within the 
medium are given. Provisions for either a vertical or explosive point source of P – waves 
are included in the derivations. A number of points regarding this seismic modeling 
process, especially where some mathematical rigor is required are dealt with in a series of 
Appendices. 
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Using the formulae presented here it should be possible write a hybrid finite difference 
– finite integral transform programs for a variety of source – receiver configurations 
including AVO and VSP. 
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APPENDIX A: FINITE HANKEL TRANSFORM 
Although the two following finite Hankel transform methods may be found in the 

literature (Sneddon, 1972, for example), it was felt that for completeness they should be 
included here, at least in an abbreviated theorem formulation. The finite Hankel 
transform of the first kind is a direct application of the following theorem. 

Theorem I: If ( )f x  satisfies Dirichlet’s conditions in the interval ( )0, a  and if its Hankel 
transform in that range is defined to be 

  ( ) ( ) ( ) ( ) ( )1
J

0

a

j jH f x f x f x J x dxμ μξ ξ⎡ ⎤ ≡ =⎣ ⎦ ∫  (A.1) 

where jξ  is a root of the transcendental equation  

 ( ) 0jJ aμ ξ =  (A.2) 

then, at any point in the interval ( )0, a  at which the function ( )f x  is continuous , 

 ( ) ( ) ( )
( )J 22

1
1

2 j
j

j
j

J x
f x f

a J x

μ

μ

ξ
ξ

ξ

∞

=
+

=
⎡ ⎤⎣ ⎦

∑  (A.3) 

where the sum is taken over all the positive roots of equation (A.2). 

The finite Hankel transform and inverse of the second kind used in the text are given 
as follows: 

Theorem II: If ( )f x  satisfies Dirichlet’s conditions in the interval ( )0, a  and if its 
Hankel transform in that range is defined to be 

 ( ) ( ) ( ) ( ) ( )1
J

0

a

j jH f x f x f x J x dxμ μξ ξ⎡ ⎤ ≡ =⎣ ⎦ ∫  (A.4) 

in which jξ  is a root of the transcendental equation  

 ( ) ( ) 0j j jJ a h J aμ μξ ξ ξ′ + =  (A.5) 

then, at each point in the interval ( )0, a  at which the function ( )f x  is continuous , 
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2
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a h a J x

μ

μ

ξ ξ ξ
ξ μ ξ

∞

=

=
+ − ⎡ ⎤⎣ ⎦

∑  (A.6) 

where the sum is taken over all the positive roots of (A.5) and h is determined from a 
boundary operator N at x a=  defined as 



P-SV hybrid method 

 CREWES Research Report — Volume 19 (2007) 11 

 [ ] ( ) ( ) 0
df a

f h f a
dx

= + =N . (A.7) 

 

APPENDIX B: FINITE DIFFERENCE ANALOGUE 
For determining the finite difference analogue in the case of an operation of the type 

 ( ) ( )B z
z

z z
ζ
⎡ ∂ ⎤∂
⎢ ⎥∂ ∂⎣ ⎦

 (B.1) 
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∂
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or equivalently 
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which may be written as 
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⎢ ⎥⎣ ⎦
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In a similar manner 
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1

1 2 1
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k
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k k k
z
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or 
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1
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k

k
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k k k
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+
−
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so that  
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( ) ( ) ( )w z B z
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whose finite difference analogue is of the form 
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which in terms of ( )zγ  and jB  may be written as 
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from which it follows that 

 ( ) ( ) ( )
( )

1 1 1 1
2

k k k k k k kB B BB z
z

z z z
χ χ χ χ

ζ + + + −− + +⎡ ∂ ⎤∂ ≈⎢ ⎥∂ ∂ Δ⎣ ⎦
 (B.11) 

where the kχ  are obtained as 
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using the trapezoidal numerical integration scheme. 

APPENDIX C: TERMS IN INVERSE SUMMATION SERIES 
The analytic Fourier transform of the Gabor wavelet  
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is, apart from some constant multiplicative terms, 
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The horizontal wave number, k , in a coordinate system with cylindrical symmetry is 
related to the angular frequency as 

 k
v
ω=  (C.3) 

where v  is velocity and ω  is the circular frequency. It will be assumed that some upper 
bound, uω , on the band limited spectrum of the source wavelet has been determined, 
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often through numerical integration of the spectrum and then reintegration to the value 
uω  up to which about 99.99% of the initial integration. Once uω  has been determined, 

the value of uk  may be obtained as 

 
min

u
uk

v
ω=  (C.4) 

with minv  being the minimum velocity P  or VS  encountered on the spatial grid which is 
one dimensional. It is known from numerical experiments that a good approximation for 
the duration of the Gabor wavelet in the time domain is 0fγ . For some arbitrary ik  in 
the inverse series,  

 i
ik

a
ζ=  (C.5) 

where the values of iζ  are the roots of the transcendental equation 

 ( )1 0iJ ζ =  (C.6) 

so that 

 
min

u u
uk

v a
ω ζ= =  (C.7) 

or equivalently 

 
min

u
u

a
v
ωζ =  (C.8) 

indicating that the number of terms which must be considered to adequately approximate 
the infinite series summation increases linearly with a. It may be seen upon examination 
of equation (C.2) that the spectral width of the Gabor wavelet decreases with increasing 
values of γ . With the value of 4γ =  used here, 02uω ω≈ , so that with the predominant 
wavelength defined in terms of the predominant circular frequency and the minimum 
velocity encountered, 0 0 minf vλ =  equation (C.7) becomes 

 4uζ πα=  (C.9) 

In the above equation, 0aα λ= , a dimensionless quantity relating the predominant 
wavelength with the pseudo – boundary introduced at r a= . For large values of i, the 
relation approximate relation i iζ π≈  holds (Abramowitz and Stegun, 1980). Thus the 
number of terms N, required to approximate the infinite series is, with u Nζ π≈ , given as 
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 4N α≈ . (C.10) 

For comparison purposes, going through the derivation with 5γ =  results in the value of 
N being given as 

 8 5N α≈  (C.11) 

which is less than that estimated for 4γ = , as would be expected. 

 APPENDIX D: STABILITY ANALYSIS 
For a system of coupled hyperbolic equations, Mitchell (1977) and Richtmeyer and 

Morton (1967) both (among others) consider a detailed manner, employing a Fourier 
series decomposition to determine the finite difference stability criteria. For completeness, 
this analysis will be presented in a condensed form here as a consequence of a number of 
typographic errors in the literature (Pasco, 1984). 

Defining 2
sv μ ρ=  and ( )2 2pv λ μ ρ= +  the homogeneous form of the coupled 

transformed VP S−  equations of motion, in terms of transformed vertical ( )( ), ,jR k z t  

and horizontal ( )( ), ,jS k z t  vector components of particle displacement with the source 

term removed may be written as  
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 1m m
n nQ R+ =  (D.3) 

 1m m
n nP S+ =  (D.4) 

In the above, 1m
nQ + and 1m

nP +  have been introduced to reformulate the finite difference 
analogues to a two level time scheme in four unknowns.  

What is required is to determine an amplification matrix whose eigenvalues, iη , 

( )1, 2,3, 4i =  are such that stability, dependent on the spectral radius, is ensured at all grid 
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points at a given time level, ( ) ( )1 , , 1mt m t m t m t⎡ ⎤= + Δ Δ − Δ⎣ ⎦ , where it is convenient and 
is generally applicable for this analysis to choose 1m =  The implication is that the 
maximum of iη  must be uniformly bounded, i.e., 1iη <  for all mt , ( )max0 mt T n t≤ ≤ = Δ . 

It follows from Lax’s Equivalence Theorem1 (Richtmeyer and Morton, 1967) that 
given a finite difference approximation to a properly posed initial value problem, as is the 
case here, stability is a necessary and sufficient condition for convergence to the 
continuous problem. Consistency requires that the truncation error tends to zero as 

0tΔ →  for 0 t T≤ ≤ , T being the time length of the finite difference computation. The 
amplification factors (eigenvalues), iη , are obtained by substituting the error function E 
into equations (D.1) and (D.2). What results is a system of equations in 1m

nR + , 1m
nS + . 1m

nP +  
and 1m

nQ + . The form of the error functions (Mitchell, 1977) are 

 ( )expi i
i

E A i k zη⎡ ⎤= Δ⎣ ⎦∑  (D.5) 

Defining the propagation vector  

 , , ,
Tm m m m m

n n n n nP Q R S⎡ ⎤= ⎣ ⎦W  (D.6) 

with the relation between consecutive depth points of an element of m
nW  ( ), , ,W P Q R S=  

is given by 

 1
m i z m

n nW e WΔ
+ = A  (D.7) 

Substitution of equation (D.7) into the system of equations (D.1) - (D.4) yields the linear 
equation set 

 1m m
n n

+ =W B W  (D.8) 

where  
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with 

                                                 
1 “A consistent finite difference scheme for a partial differential equation for which the initial-value 
problem is well posed is convergent if and only if it is stable.” 
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The amplifications factors are the eigenvalues, iη , of the matrix B , obtained from  

 [ ]det 0η− =B I  (D.13) 

which in general terms may be written in terms of invariant coefficients as 
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or specifically for this case as 
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so that comparing (D.14) and (D.14) yields 
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The condition for stability is 1 , 1, , 4.forλ < =A A …  This leads to the conditional 
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which together with (D.16) to 
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or equivalently, as ( )2sin 2 1zΔ <A , 
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defines the requirement for stability of the finite difference scheme, 
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The resulting two inequalities from (D.18) explicitly stating a stability condition are 
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and 
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Inequality (D.20) is trivially satisfied as all quantities are positive definite. Thus, the 
necessary and sufficient condition for the stability of the finite difference problem under 
consideration is that (D.21) be satisfied. 

 


