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Various topics in pseudo-differential operator theory applied to 
scalar qP wave propagation in a transversely isotropic medium 

P.F. Daley 

ABSTRACT 

Scalar wave equation approximations for quasi-compressional ( )qP  propagation in a 
transversely isotropic medium are developed and solution options presented. The initial 
eikonals are obtained from linearization of the exact eikonal, or more correctly the 
linearized phase velocity, as well as from other approximations of the exact eikonal. The 
linearized approximate phase velocities or eikonals are used to construct partial 
differential equation of order four in spatial derivatives and order two in time using 
pseudo-differential operator theory. The assumption that some or all of the 2D model 
space is rotated at some angle with respect to a Cartesian model coordinate system is 
examined in a cursory manner. That the medium is weakly anelliptic is understood. Also, 
as the anisotropic parameters are usually spatially dependent this fact is taken explicitly 
into consideration when constructing the partial differential equation. The degenerate, or 
elliptical case, is also investigated as it is much simpler with results that should at least 
grossly approach the full scalar qP wave equation. 

INTRODUCTION 
There are a number of directions in which to proceed if a scalar wave approximation 

for quasi-compressional ( )qP  propagation in a transversely isotropic medium, or a 
related expression if the medium is assumed to be rotated at some spatially varying angle 
with respect to model coordinates, is sought (Igel et al, 1995, Alkhalifah, 1998a and 
1998b, Zhang et al., 2003, Zhang et al., 2004, Zhang et al., 2004). Clearly some 
approximations must be made, most often that the media are weakly anelliptic. Under this 
assumption, a linearized formulation of the phase velocity (Backus, 1965) and 
corresponding eikonal would be a reasonable starting point as would a weakly anelliptic 
approximation of the exact eikonal equation. From these a number of procedural methods 
may be taken for similar scalar wave equations describing qP wave propagation in a 
weakly anelliptic TI medium. What has appeared to be neglected in the literature on this 
topic is the likelihood that the anisotropic parameters are spatially dependent. This may 
seem a trivial matter after all the approximations that have been made to the point where 
a scalar qP wave equation is to be reconstructed from a linearized eikonal equation, 
usually by utilizing pseudo-differential operator theory. However, it is thought that this 
matter should be given at least minimal attention. Writing the scalar approximation in a 
symmetric form adds some mathematical rigor to the theoretical and hence numerical 
development. As the eikonal is obtained from a symmetric operator, it would seem 
appropriate that any scalar equation that approximates the original equation should also 
be composed of symmetric operators. A comparison of several methods used to obtain 
the approximate scalar qP wave equation in a TI medium are developed. 
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THEORETICAL DEVELOPMENT 
In this section three similar scalar wave equations for qP wave propagation in a TI 

medium are developed with the focus being on the approximations required to obtain 
each. The equation developed by Alkhalifah (1998a, 1998b) is used as a reference and is 
presented in Appendix C. As two different notation schemes are (necessarily) used, the 
relationships between the two notation schemes are given in Table 1 and the similarities 
of the various scalar wave equations are shown. The assumptions that are required to be 
made suggest that the eikonal equation presented by Podvin and Lecomte (1991) and 
Lecomte (1992, 1993) – initially assuming a suitable eikonal based on intuition, derived 
from experience in the field of anisotropic wave propagation methods, could have been 
used as a starting point. As a consequence much mathematical gymnastics done away 
with and the determination of the anelliptic term by empirical methods, usually involving 
travel times, could have been immediately pursued. 

Approximation 1: 

A linearized quasi-compressional ( )qP  eikonal in a transversely isotropic medium 

may be obtained from the linearized qP  phase velocity, ( ),qP k kv x n , (Backus, 1965) 
given by 

 ( ) 2 2 2 2
11 1 33 3 13 1 3,qP k kv x n A n A n E n n= + +  (1) 

where the unit phase velocity vector is ( )1 3,n n=n  ( )1=n  and the kx  dependence 
indicates that the iiA  and 13E  may be functions of position. Divide equation (1) to obtain 
a pseudo-eikonal with, ( ),k k qP k kp n v x n=  being the slowness vector components, to 
obtain 

 ( ) 2 2
11 1 33 3 13 1 3 1 3, , 1qP k k kG x n p A p A p E p p n n= + + = . (2) 

To remove the dependence of (2) on the kn , the identities ( ) ( ), , 1qP k k qP k kv x n v x n =  and 
2 2
1 3 1n n+ =  are introduced to produce the linearized eikonal 

 ( )
2 2

2 2 13 1 3
11 1 33 3 2 2

1 3

, 1qP k k
E p pG x p A p A p
p p

= + + =
+

. (3) 

The slowness vector is defined as ( )1 3,p p=p , where the components, kp , have been 
defined above. The density normalized anisotropic parameters, ijA , have the dimensions 
of velocity squared and as previously mentioned the iiA  and 13E  may be spatially 
dependent. The term defining the deviation from the elliptical (the linearized anelliptical 
term) is  
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 ( ) ( )13 13 55 11 332 2E A A A A= + − + . (4) 

In an alternate notation, ( )( )13 332E A δ ε= −  where ( )δ  is the linearized form of δ  and 

ε  is given by the standard definition, ( )11 33 332A A Aε = − , the following expression for 
( )δ  results 

 

( ) ( )13 55 33

33

2A A A
A

δ
+ −

=
 (5) 

It is not unreasonable to assume that a solution for some amplitude potential is of the 
form 

 [ ]1 1 3 3expAmplitude potential i t ik x ik xω∝ − + + . (6) 

The associated pseudo – differential operators with the exponential terms are defined as 
1 1ik i pω=  and 3 3ik i pω= , and given in temporal and spatial operator notation as 

 1 1 3 3ti ik ikω− → ∂ → ∂ → ∂  (7) 

Equation (3) may be rewritten in a symmetric form, for some operation " " , on some 
potential function φ  as 

 ( ){ }2 2 2 2
1 11 1 3 33 3 1 3 13 1 3 1 00 1 3 00 3 0p A p p A p p p E p p p A p p A p φ+ + − + =  (8) 

where now 

 ( )13 13 552 2E A A= + . (9) 

has been obtained as follows 

 
( )

( )
1 3 13 1 3 1 3 13 1 3 1 3 11 33 1 3

1 3 13 55 1 32 2

p p E p p p p E p p p p A A p p

p p A A p p

= + +

⎡ ⎤= +⎣ ⎦
 (10) 

For convenience, the quantity ( ) ( )00 1 :k k kA x x x⎡ ⎤≡ ∀ −∞ < < ∞⎣ ⎦  has temporarily been 
introduced. 

The partial derivative operations defined in equation (7) are introduced by first pre-
multiplying equation (8) by ( )4iω− . It is assumed that (8) operates on some function 
(potential) ( ), ,x z tφ  such that a force is defined by φ= ∇u  and as a result pressure is 

given by 2P φ φ= ∇ ⋅∇ = ∇ ⋅ = ∇u  to yield 
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 ( ) ( ) ( ) ( )2 2 2 2 2 2 2
1 11 1 3 33 3 1 3 13 1 3 1 3 0tA A Eφ φ φ φ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ − ∂ ∂ + ∂ =

 (11) 

The above equation incorporates the most general case of a linearized quasi-
compressional scalar equation, as it assumes that the anisotropic parameters ijA  are 

spatially dependent, i.e., ( )1 3,ij ijA A x x≡ . It is often convenient to write a part of 
equation (11) in terms of pressure so that with 

 ( ) ( ) ( )2 2 2 2 2 2 2
1 3t t t t Pφ φ∂ ∂ + ∂ = ∂ ∇ = ∂ ∇ ⋅ = ∂u  (12) 

equation (11) becomes 

 ( ) ( ) ( )2 2 2 2 2
1 11 1 3 33 3 1 3 13 1 3 0tA A E Pφ φ φ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ − ∂ =

 (13) 

or in a more convenient notation 

 ( ) ( ) 2
1 30 , , 0tx x t Pφ⎡ ⎤ℜ − ∂ =⎣ ⎦  (14) 

where the function ( )χℜ  may be inferred from equation (13) with the parameter, χ , of 
the function, ( )χℜ , indicating its orientation to the global model Cartesian coordinate 
system. Applying an orthonormal rotation of the type discussed in Appendix B has the 
property that what has been designated above as pressure ( )P  is invariant with respect to 
this type of rotation, which is what would be expected. 

It should be noted at this point that in a number of papers on this topic the assumption 
that the relationship between the potential, φ , and the pressure. P, is given by 2

tP φ= ∂ , 
where here the derivation leads to the relationship that 2P φ= ∇ . This requires that to 
recover φ , assuming that P is known at the current time step, requires φ  must be 
obtained as the solution of banded matrix problem, that is, a pentadiagonal matrix 
problem, which adds a significant amount of complexity to the solution of this problem. 
An implicit, alternating direction (ADI) algorithm to accomplish this is described in 
Appendix A. The explanation for 2

tP φ= ∂  replacing 2P φ= ∇  in other approximations in 
the literature is dealt with in a subsequent section. 

Continuing with the problem at hand, equation (13) is solved with zero initial values, 
i.e., 

 0 0
0tt t

φ φ= =
= ∂ =  (15) 

and  
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 0 0
0tt t

P P= =
= ∂ =  (16) 

A point source term, ( )1 3, ,F x x t , may be introduced in equation (13) for ( )1 3, ,x x tφ  at 

( )0 0 0
1 3,x x=x  (Mikhailenko, 1980) 

 ( ) ( ) ( ) ( ) ( ) ( )0 0
1 3 1 3 1 1 3 3, , ,x x t F x x f t x x x x f tδ δ⎡ ⎤= ∇ = ∇ − −⎣ ⎦u  (17) 

so that  

 ( ) ( ) ( ) ( )0 0
1 3 1 1 3 3, ,F x x t x x x x f tδ δ= − −  (18) 

In the above ( )δ ζ  is the Dirac delata function and ( )f t  is some (usually band limited) 
source wavelet.  

Approximation 2: 
The derivation of this form of the scalar qP wave equation in a TI medium will 

use equation (2) as a starting point, viz., 
 ( ) 2 2

11 1 33 3 13 1 3 1 3, , 1qP k k kG x n p A p A p E p p n n= + + =  (19) 

In this instance, rather than introducing the two equalities that precede equation (3), 
the approximation ( )2 2 1qP kV v p = , for some V , which may be spatially dependent, to be 
determined is introduced. In light of the eikonal employed in the first section in this 
report this assumption may be considered somewhat problematic. It would not be 
unreasonable to assume that 2V  is, as ( )2

33 11qP kA v p A≤ ≤ , such that the behavior of 2V  

be similar, i.e., 2
33 11A V A≤ ≤ . Proceeding leads to the eikonal 

 ( ) 2 2 2 2 2
11 1 33 3 13 1 3, 1qP k kG x p A p A p V E p p= + + =  (20) 

Lecomte (1992) employed a similar equation, in migration algorithms, 

 
2 2 2 2

11 1 33 3 1 3 1A p A p A p pδ+ + =  (21) 

where the spatially dependent quantity Aδ  is required to be obtained empirically. 

Introducing the pseudo-differential operators as in the preceding section results in 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 22 22 2 42

11 1 33 3 13 1 3 0i A ik i A ik V E ik ik i φω ω ω =− + − + − − −
 (22) 

for some potential, φ  and subsequently to the partial differential equation 

 
2 2 2 2 2 2 2 4

11 1 33 1 13 1 3 0t t tA A V Eφ φ φ φ∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ =  (23) 

Letting 2
tP φ= ∂ , yields 
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2 2 2 2 2 2

11 1 33 1 13 1 3 0tA P A P V E Pφ∂ + ∂ + ∂ ∂ − ∂ =  (24) 

To determine the value of 2
13V E , recall that 

 ( ) ( )13 13 55 11 332 2 .E A A A A= + − +  (25) 

Using equation (T.7) from Table 1 has 

 ( ) ( )2
33 111 2 1 2NMOV A Aη ε+ = + =  (26) 

and the linearized term 2
13V E  becomes 

 ( ) ( )2
13 11 13 55 11 332 2V E A A A A A⎡ ⎤= + − +⎣ ⎦  (27) 

which for 55 0A =  reduces to 

 ( )2
13 11 13 11 33V E A A A A⎡ ⎤= − +⎣ ⎦  (28) 

Comparing the above result to that obtained by the derivation by Alkhalifah (1998b), 
(Appendix C) requires that the following quantities satisfy the relation 

 ( ) ( )2
13 11 33 11 13 11 33A A A A A A A⎡ ⎤− ≈ − +⎣ ⎦  (29) 

under the assumption of weak anellipticity. 

Approximation 3: 
From the exact eikonal for qP wave propagation in a TI medium (Gassmann, 1964), 

after the approximation for moderate anellipticity has been introduced, a scalar wave 
equation may be constructed in a manner similar to that used in Approximation 1. The 
approximate eikonal in this case is given by 

 ( ) ( )2 2 2 2 2
1 3 11 1 33 3 13 11 33 1 2, 1qPG p p A p A p A A A p p= + + − =  (30) 

where the condition 55 0A =  has been introduced. In contrast to the previous case, some 

velocity 2V  ( )2
33 11A V A≤ ≤  is not introduced to obtain (30). Rather, it is required that 

the qP phase velocity is replaced by the related degenerate elliptical phase velocity 

 
( ) ( ) ( )

2.2 2 2
11 33sin cosellip

qP qPv v A Aθ θ θ θ⎡ ⎤ ⎡ ⎤≈ = +⎣ ⎦⎣ ⎦  (31) 
to obtain equation (30). It should be noted at this point that it is this form of the scalar 
wave equation for qP wave propagation in a TI medium that was derived by Alkhalifah 
(1998b) and discussed in more detail in Appendix C. The assumption that 55 0A =  was 
introduced earlier here, than in that work, as a necessity to avoid dealing with a more 
complex initial approximate equation. 
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Some function (potential) ( ), ,x z tφ  is introduced such that a resulting pseudo- 

pressure is given by 2
tP φ= ∂  to yield 

 ( ) ( ) ( ) ( )( ) ( )22 2 2 2 2
11 33 13 11 33, , , , , , , ,t x z xzP x z t A P x z t A P x z t A A A x z tφ∂ = ∂ + ∂ + − ∂

 (32) 
where 

 ( ) ( )( )
55

55

2 2
13 55 11 55 33 55 13 11 330 0

D A A
A A A A A A A A A A

= =
= + − − − = −  (33) 

Rewriting in symmetric operator notation has 

 
( ) ( ) ( )

( ) ( )

2
11 33

2 2 2
13 11 33

, , , , , ,

, ,

t x x z z

xz xz

P x z t A P x z t A P x z t

A A A x z tφ

∂ = ∂ ⎡ ∂ ⎤ + ∂ ⎡ ∂ ⎤ +⎣ ⎦ ⎣ ⎦
⎡ ⎤∂ − ∂⎣ ⎦

 (34) 

This problem is also solved, with zero initial conditions, and some point source excitation 
as in the previous case. Often the method of solution involved is to return equation (32) 
to Fourier operator notation and solve the resultant problem in a numerical fashion, 
computing the spatial derivatives using a discrete Fourier transform (DFT). A second 
order finite difference approach is then employed to obtain the temporal derivatives, i.e. 

 ( ) ( ) ( ) ( )
( )

2
2

2
t

P t t P t P t t
P t

t
+ Δ − + − Δ

∂ =
Δ

 (35) 

with 

 ( ) ( ) ( ) ( )
( )2

2t t t t t
P t

t
φ φ φ+ Δ − + − Δ

=
Δ

 (36) 

The solution of (32), using finite difference methods exclusively, is given in Rector et al. 
(2002). 

THE DEGENERATE (ELLIPTICAL) CASE 
It may be useful to look at the elliptical case of this problem as it can produce results 

similar to the general formulation in a much less complex manner. For this problem, the 
anelliptic term is zero, i.e., 13E , so that equations (3) and (7) become 

 ( ) 2 2
11 1 33 3, 1qP k kG x p A p A p= + =  (37) 

and 
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 { }1 11 1 1 33 1 00 0p A p p A p A φ+ − =  (38) 

respectively, where all quantities have been previously defined. The resulting unrotated 
problem to be solved by finite difference methods may be written in terms of the 
temporal and spatial partial differential operators, t∂ , 1∂  and 3∂  in the following form 

 ( ) ( ) ( )2
1 11 1 3 33 3 1 3, , ,tA A F x x tφ φ φ∂ ∂ + ∂ ∂ − ∂ =  (39) 

for some source term, ( )1 3, ,F x x t , and again subject to the initial conditions 

 0 0
0tt t

φ φ= =
= ∂ =  (40) 

In a rotated coordinate system transformation, discussed in Appendix B this problem 
becomes 

 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

2 2
11 11

2 2
33 33

11 11 33 33

2

cos sin

sin cos

cos sin

0

x x z z

x x z z

x z z x x z x z

t

A A

A A

A A A A

χ φ χ φ

χ φ χ φ

χ χ φ φ φ φ

φ

∂ ∂ + ∂ ∂ +

∂ ∂ + ∂ ∂ −

⎡ ⎤∂ ∂ + ∂ ∂ − ∂ ∂ −∂ ∂⎣ ⎦
−∂ =

 (41)  

which as previously stated is much simpler than the general case discussed as it is 
dependent only on the potential, ( )1 3, ,x x tφ . For this simple case the results are 
comparable, at least in general behavior, to the case where an anelliptic term is 
introduced. The approximations used in introducing the anelliptic term in subsections (2), 
(3) and Appendix C suggest that the use of the degenerate qP wave equation might 
produce acceptable results in the early stages of the analysis of field data. 

NUMERICAL RESULTS 
The model used to produce numerical results for the degenerate elliplitical qP scalar 

wave equation is shown in Figure (1). The anisotropic parameters and densities are 
defined in the figure. In the elliptical case 2 2

13 0.0 /E m s≡ . The algorithm for this case, 
described in the preceding section, is computed for rotation angles of 30±  degrees, as 
well as 0 degrees, in the second (elliplitical) layer. The results are shown in Figures (2) 
with descriptions given in the associated figure caption. Rather than a single point source 
of P – waves, a sequence of identical point sources are placed at each surface node of the 
finite difference grid to approximate a stacked section. In all of the trace panels, the direct 
arrivals have been removed from the receivers located at the surface to enhance the 
display of the reflected PP events. 

It is evident in the figures that, as expected, the position of the diffracting corner 
between layers 3 and 4 is misplaced. The correct position of the diffracting corner, again 
as would be expected, lies at the midpoint of the positions indicate in the positive and 
negative synthetics. This can be verified by using a rotation angle of 0 degrees in the 
anisotropic layer. 
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A further numerical experiment that will be carried out here is a comparison of the 
homogeneous and inhomogenous scalar wave equations, which in an isotropic medium 
would read as  

 ( ) ( ) ( ) ( ) ( )2 2 2
0, ,tc t t f tφ φ δ∇ − ∂ = −x x x x x  (42) 

 ( ) ( ) ( ) ( ) ( )2 2
0, ,tc t t f tφ φ δ⎡ ⎤∇ ⋅ ∇ − ∂ = −⎣ ⎦x x x x x

 (43) 

By inspection, it would appear that they would not differ much from one another, given 
the same velocity model. However, for the model shown in Figure (1), and the panels in 
Figure (3) it is clear that the do not produce the same results. The four panels include the 
solution obtained using a finite difference solution of the elliptical equivalents of 
equations (42) and (43) together with their sums and differences. 

 

CONCLUSIONS 

A linearized qP  eikonal for a transversely isotropic (TI) medium is arranged into a 
symmetric formulation to produce, after the replacement of wave number vector 
components by its differential operator equivalents. The symmetric operator formulation 
forces differentiation of the anisotropic parameters that define the medium This is a 
variation of what has been presented in the literature, where these parameters have been 
assumed spatially independent, in similar scalar wave approximations. For generality, the 
possibility of an arbitrary coordinate rotation, with respect to the model system is 
introduced. If the problem is to be solved by finite difference methods on a rectangular 
grid, this angle may vary in an arbitrary manner as may the anisotropic parameters. As a 
reference the elliptical (degenerate) problem is briefly addressed, as it produces, for weak 
anelliptical models, a reference synthetic using a much less complicated finite difference 
algorithm. This may be useful in economically checking the results obtained by the 
general method. 

Further other formulations of a scalar type wave equation for wavesP −  in a TI 
medium are investigated and compared. It is determined in this process what assumptions 
and approximations are required to be made to arrive at an equation that is not as 
complicated as the first approximation presented, yet stil model the wave type in 
question. 

As a final note, a comparison of homogeneous and inhomogeneous scalar wave 
equations for the TI elliptical scalar waveP −  equations. It would be thought that these 
would be quite similar. However, a numerical display of the results shows a marked 
difference, indicating that some further research is indicated in this area. 
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APPENDIX A: A PENTADIAGONAL ADI SYSTEM SOLUTION SEPARATED 
INTO TWO IMPLICIT TRIDIAGONAL SYSTEMS 

Consider the equation 2 Pφ∇ =  in a two spatial dimension system, where at the time 
step 1n + , the value of 1

,
n

i jP +  is known at all ( ) ( ) ( )( ), ,i j i x j z→ Δ Δ . The operator 
2φ∇   

 
1 1 1 1 1

1, 1, , 1 , 1 , 1
,2

4n n n n n
i j i j i j i j i j n

i jP
h

φ φ φ φ φ+ + + + +
+ − + − ++ + + −

=  (A.1) 

is first separated into its two constituent parts, 2 2andx zφ φ∂ ∂  in the following manner 
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1 1 1 1 1 1

1, , 1, , 1 , , 1 1
,2 2

2 2n n n n n n
i j i j i j i j i j i j n

i jP
h h

φ φ φ φ φ φ+ + + + + +
+ − + − +− + − +

+ =  (A.2) 

However, the quantities in the two terms on the LHS of equation (A.2) are just the 
original pentadiagonal system rewritten in another form. The equation (A.2) may be 
recast in either of the two following manners, with either operation assumed to be known 
at the time step n, so that either 

 1 1 1 2 1
1, , 1, , , 1 , , 12 2n n n n n n n

i j i j i j i j i j i j i jh Pφ φ φ φ φ φ+ + + +
+ − + −− + = − − +  (A.3) 

or 

 1 1 1 2 1
, 1 , , 1 , 1, , 1,2 2n n n n n n n

i j i j i j i j i j i j i jh Pφ φ φ φ φ φ+ + + +
+ − + −− + = − − +  (A.4) 

Consider equation (A.3) and write it at the half time step 1 2n + , for the x spatial 
direction as 

 
1 2 1 2 1 2 2 1

1, , 1, ,

, 1 , , 1 1, , 1,

2 2

2 2 2

n n n n
i j i j i j i j

n n n n n n
i j i j i j i j i j i j

h Pφ φ φ

φ φ φ φ φ φ

+ + + +
+ −

+ − + −

⎡ ⎤− + = −⎣ ⎦
⎡ ⎤ ⎡ ⎤− + − − +⎣ ⎦ ⎣ ⎦

 (A.5) 

which may be followed by 

 
1 1 1 2 1

1, , 1, ,

1 2 1 2 1 2
, 1 , , 1 1, , 1,

2 2

2 2 2

n n n n
i j i j i j i j

n n n n n n
i j i j i j i j i j i j

h Pφ φ φ

φ φ φ φ φ φ

+ + + +
+ −

+ + +
+ − + −

⎡ ⎤− + = −⎣ ⎦
⎡ ⎤ ⎡ ⎤− + − − +⎣ ⎦ ⎣ ⎦

 (A.6) 

to obtain the values of φ  at the ( )1 thn +  time step. The alternating direction aspect of this 
set of equations results from using the z spatial direction at the next half time step and full 
time step to evaluate φ  of what would now be the ( )2 thn +  time step. (The time 
superscripts will not be incremented in what follows to reflect this. 

The finite difference analogue for equation (A.4) at the half time step 1 2n + , for the z 
spatial directions is given by 

 
1 2 1 2 1 2 2 1

, 1 , , 1 ,

1, , 1, , 1 , , 1

2 2

2 2 2

n n n n
i j i j i j i j

n n n n n n
i j i j i j i j i j i j

h Pφ φ φ

φ φ φ φ φ φ

+ + + +
+ −

+ − + −

⎡ ⎤− + = −⎣ ⎦
⎡ ⎤ ⎡ ⎤− + − − +⎣ ⎦ ⎣ ⎦

 (A.7) 

which is followed by the full time step analogue for incrementing the time step count by 
one using the z spatial direction 
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1 1 1 2 1

, 1 , , 1 ,

1 2 1 2 1 2
1, , 1, , 1 , , 1

2 2

2 2 2

n n n n
i j i j i j i j

n n n n n n
i j i j i j i j i j i j

h Pφ φ φ

φ φ φ φ φ φ

+ + + +
+ −

+ + +
+ − + −

⎡ ⎤− + = −⎣ ⎦
⎡ ⎤ ⎡ ⎤− + − − +⎣ ⎦ ⎣ ⎦

 (A.8) 

It is to be remembered that the solutions of equations (A.5) – (A.8) over the ( ),x z  plane 
must be done using a tridiagonal procedure, such as that of Thomas (Conte and deBoor, 
1972). 

APPENDIX B: ROTATION THEORY FOR INITIAL PROBLEM CONSIDERED 
In a rotated (primed) system, with respect to the reference or model coordinate system, 

the orthonormal (length preserving) transform through some angle χ  of the 

( ), 1,3.jik j =  must be made and implemented, most easily in equation (8), through the 
relations 

 

1

3

cos sin
sin cos

x

z

ikik
ikik

χ χ
χ χ

+ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦  (B.1) 

where the sign choice is dictated by how the rotated coordinates are defined with respect 
to the model coordinates, in other words, the manner of specifying χ . 

As the rotation transformation is orthonormal, length is preserved, so that 

 ( ) ( ) ( ) ( )2 2 2 2
1 3 x zik ik ik ik+ = + , (B.2) 

or equivalently 

 2 2 2 2
1 3 x z∂ + ∂ = ∂ + ∂ . (B.3) 

This is consistent with P, (pressure) being a scalar quantity. Taking the inverse of 
equation (B.1) has 

 1

3

cos sin
sin cos

x

x

ik ik
ik ik

χ χ
χ χ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 (B.4) 

Implementing this rotation transformation results in equation (14) having the form 

 ( ) ( ) 2
1 3, , 0tx x t Pχ φℜ ⎡ ⎤ − ∂ =⎣ ⎦  (B.5) 

which together with equation (13) may be rearranged to yield 
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( ){
( )

( )
( )

( )

2 2 2 2
11

2 2 2 2

2 2 2 2
33

2 2 2 2

2 2 2 2
13

2 2

cos 2cos sin sin

cos 2cos sin sin

sin 2cos sin cos

sin 2cos sin cos

cos sin cos sin

cos sin co

x x z z

x x z z

x x z z

x x z z

x z x z

x z

A

A

E

χ χ χ χ

χ χ χ χ

χ χ χ χ

χ χ χ χ

χ χ χ χ

χ χ

∂ − ∂ ∂ + ∂ ×

∂ − ∂ ∂ + ∂ +

∂ + ∂ ∂ + ∂ ×

∂ + ∂ ∂ + ∂ +

⎡ ⎤ ⎡ ⎤∂ − ∂ + − ∂ ∂ ×⎣ ⎦ ⎣ ⎦

⎡ ⎤∂ − ∂ +⎣ ⎦( )

( )} ( )[ ]

2 2

2 2 2 2

s sin

0

x z

t x z t P

χ χ

φ χ φ

⎡ ⎤− ∂ ∂ −⎣ ⎦

∂ ∂ + ∂ = = ℜ − ∂

 (B.6) 

Further rearrangement produces an extremely long and complicated equation which is not 
used here and as a consequence will not be pursued at this time. 

APPENDIX C: AN ALTERNATE qP SCALAR WAVE EQUATION IN A TI  
MEDIUM 

A scalar wave equation for qP waves in a TI medium, equivalent to that derived in an 
earlier section of the work is given by Alkhalifah (1998a). The (three dimensional) 
migration dispersion relation for qP  wave propagation may be written for the case of a 
2D TI  medium as 

 0

2 2
2 1
3 2 2 2 2

1

1
1 2P

V pp
V v V pη

⎡ ⎤
= −⎢ ⎥−⎣ ⎦  (C.1) 

which in the wavenumber domain has the form 

 0

2 2 2 2
2 1
3 2 2 2 2 2

12P

V kk
V v V k

ω ω
ω η

⎡ ⎤
= −⎢ ⎥−⎣ ⎦  (C.2) 

for some vertical velocity 
0

2
33PV A= ,some undetermined velocity 2V , and the definition of 

the quantity η  given below, is used as a starting point. Introducing the operator notation 
for 1k , 3k  and ω  as specified in equation (6) the following partial differential equation is 
obtained 

 ( )
0 0

2 2 2 2 2 2 2 2 2
1 31 2 2t P P x zP V P V P V Vη η φ∂ = + ∂ + ∂ − ∂ ∂ . (C.3) 

where  
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 ( ) ( )2, , , ,tP x z t x z tφ= ∂  (C.4) 

( ), ,P x z t  being specified as pressure. 

This equation evolves in subsequent works Alkhalifah (1998b), using the qP eikonal 
in the form presented by Tsvankin (2001), to 

 ( )
0 0

2 2 2 2 2 2 2 2 2
1 3 1 31 2 2t NMO P NMO PP V P V P V Vη η φ∂ = + ∂ + ∂ − ∂ ∂  (C.5) 

where the previously unspecified velocity 2V  has been replaced by 2
NMOV , the normal 

moveout (NMO) velocity. It should be mentioned at this point that the authors cited in 
this section indicate that for 0η = , equation (C.5) reduces to the isotropic scalar wave 
equation. However, 0η =  corresponds to ε δ= , which is the condition for the 
degenerate form of qP wave propagation, specifically, the elliptical problem. Such may 
be shown to be the case if expansion of η  into its constituent parameters is done before 
coming to the former conclusion. 

Replacing the parameters in the above equation by the notation, using the previously 
defined, together with the sequence of definitions given in Table 1, the following partial 
differential equation is obtained 

 ( )2 2 2 2 2 2
11 1 33 3 33 33 33 55 1 3t DP A P A P A A A A A φ⎡ ⎤∂ = ∂ + ∂ + − ∂ ∂⎣ ⎦  (C.6) 

which is very similar to equation (34) obtained earlier if written in the symmetric form 

 
( ) ( ) ( )2 2

1 11 1 3 33 3 1 3 33 33 33 55 1 3t DP A P A P A A A A A φ⎡ ⎤⎡ ⎤∂ = ∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ ∂⎣ ⎦⎣ ⎦  (C.7) 

In the papers referenced in this work, the equations referenced are usually solved with the 
condition 

0

2
55 0SV A= = , which results in equation (C.7) having the form 

 
( ) ( ) ( )2 2

1 11 1 3 33 3 1 3 13 11 33 1 3t P A P A P A A A φ⎡ ⎤∂ = ∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ ∂⎣ ⎦  (C.8) 

Additionally it follows that this problem solved with zero initial conditions 

 0 00 0
0t tt tt t

P P φ φ= == =
= ∂ = = ∂ =  (C.9) 

with the option of introducing a point source with a band limited source wavelet 

 ( ) ( ) ( ) ( ) ( ), , , 0s s s s sx z t x x z z f t t n tφ δ δ= − − ≤ ≤ Δ  (C.10) 

A second order finite difference approach is then employed to obtain the temporal 
derivatives, i.e. 
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 ( ) ( ) ( ) ( )
( )

2
2

2
t

P t t P t P t t
P t

t
+ Δ − + − Δ

∂ =
Δ

 (C.11) 

with 

 ( ) ( ) ( ) ( )
( )2

2t t t t t
P t

t
φ φ φ+ Δ − + − Δ

=
Δ

 (C.12) 

As previously mentioned, the solution of (C.6), using finite difference methods 
exclusively, is given in Rector et al. (2002). 
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Table 1. Relationships between different methods of specifying parameters describing a TI 
medium. 

 ( ) ( )
0

2 2
331 1NMO PV V Aδ δ= + = +  (T.1) 

 
1 2
ε δη

δ
−=

+
 (T.2) 

 
( )11 33

332
A A

A
ε

−
=  (T.3) 

 
( ) ( )

( )

2 2
13 55 33 55

33 33 552
A A A A

A A A
δ

+ − −
=

−
 (T.4) 

 
( ) ( )( )

( ) ( )

2
13 55 11 55 33 55

33 33 55 33 33 552 2
DA A A A A A A

A A A A A A
ε δ

⎡ ⎤+ − − −
− = − = −⎢ ⎥

− −⎢ ⎥⎣ ⎦
 (T.5) 

             ( ) ( )( )2
13 55 11 55 33 55DA A A A A A A= + − − −  (T.6) 

 ( ) ( )2
33 111 2 1 2NMOV A Aη ε+ = + =  (T.7) 

 
( ) ( )( )2

13 55 55 33 55
1 2 2

DA

A A A A A

ε δη
δ

− −= =
+ + + −

 (T.8) 
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FIG. 1. Model used in computing synthetics in Figures 2 and 3. 
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FIG. 2. Positive (upper) and negative (lower) anisotropic axes rotation as shown in Figure 1. 
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FIG. 3. Comparison of synthetics for Model 1 with no rotation in the second layer. Equations (42) 
and (43) are used here, panels (a) and (b). The difference of panels (a) and (b) are shown in 
panels (c) and (d). 

 

 


