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ABSTRACT

Simultaneous correction of near-surface statics and traceinterpolation is constructed
from a Fourier integral representation of wavefield extrapolation and implemented in a
least-squares sense. Synthetic examples based on extreme velocity variation and extreme
elevation change are used to demonstrate individually and together the aspects of interpola-
tion and of the full statics-application-plus-interpolation (STAPPI). The Husky 2D dataset
is used to to demonstrate that this approach interpolates missing traces and applies near-
surface statics in a real setting with extreme near surface variation in velocity and elevation.

The method is found to be computationally intensive, and an approximation based on
expansion of the Hessian matrix is derived and implemented.A four term implementation
of the expansion of the Hessian is developed and tested against the exact operator. The
approximate method is found to return comparable data to that of the exact method for all
but the most extreme cases. Though computational efficiencyis improved by only a scalar
relative to the exact algorithm, this work provides an analytic and numerical platform upon
which to build an accurate operator that reduces the order associated with computational
cost.

INTRODUCTION

Ferguson (2006) presents a method by which severe statics and trace irregularity are
corrected. The analytic basis for this method results in an algorithm that is extremely
expensive to apply in 2D and impossible to implement in 3D dueto cost. An approximation
is then developed in Ferguson (2006) by which computationaleffort is reduced through
efficient, limited computation of the Hessian of the corresponding inverse problem. Here,
I revisit this approach, and I provide a more solid analytic basis for approximation through
series approximation and truncation. Though the resultingalgorithm is not significantly
more efficient than the algorithm of Ferguson (2006), it represents an analytic form that is
useful as a basis for further, and perhaps more fruitful, approximation; and I provide some
insight into this in this paper. I develop a more rigorous experimental procedure here as
well, with great care taken to illustrate the utility and accuracy of this approach. Further, I
introduce a new acronym - STAPPI (statics application plus interpolation) - to the lexicon
of geophysics in this paper.

The problem addressed specifically in this paper is that of seismic data recorded in
extreme terrains, or in regions of patchy surface access that result in irregular source and
receiver spacing. This suffering is the result, partially,of the huge dependence on the
fast Fourier-transform in seismic data processing, and theresultant requirement of regular
spacing. Then, because irregular spacing makes ambiguous the computation of a spatial
Nyquist, maximum phase angle is suspect, and spurious energy propagates through all
stages of processing and imaging. Further, irregular trace-spacing introduces a ’footprint’
of migration artifacts when data are imaged (Nemeth et al., 1999, provide numerous ex-
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amples). Data, therefore, should beregularized prior to processing and imaging.

Currently, as a remedy for irregular trace-spacing, filters are used to construct missing
traces from the spectra of surrounding traces (Spitz, 1991;Liu and Sacchi, 2004). As well,
the interpolation properties of wave propagation can be used to fill empty trace-locations
(Ronen, 1987; Zhu and Lines, 1997). In Fourier reconstruction, sparse Fourier inversion is
used to estimate missing traces (Duijndam et al., 1999; Zwartjes and Duijndam, 2000).

Besides the problem of irregular trace spacing, conditions that result in irregular data
are often associated with strong heterogeneity and/or anisotropy close to the surface. Re-
flections of interest in the deeper section appear distortedin such areas, and when analyzed
for moveout, for example, erroneous velocity-interpretation can result, and imaging is com-
promised further — beyond problems associated with missingtraces. Offshore, rugosity
of the seafloor can have a similar effect — in particular when water is shallow (Ferguson
and Mosher, 2003).

Numerous approaches exist to correct for complex near-surface. Berryhill (1985) mit-
igates the effect of heterogeneous surface-layers with wavefield-extrapolation operators
based on the wave equation. Berryhill (1979) uses a wave-equation approach to improve
the coherence of reflections on synthetic zero-offset data,also on real, prestack-data. Wig-
gins (1984) provides similar examples using data from a physical model. Yilmaz and
Lucas (1986) improve velocity analysis by using a wave-equation based correction for
near-surface variation. Bevc (1997), and Shtivelman and Canning (1987) demonstrate the
superiority of wave-equation based correction over the more common elevation-statics (re-
striction of rays to normal incidence). At their core, all ofthese methods are ray-based
implementations (see for example Schneider (1978)), and most use only smoothly vary-
ing velocities (presumably due to limitations in raytracing). Reshef (1991) uses a scheme
analogous to the Phase-shift-plus-interpolation method (Gazdag and Sguazzero, 1985) to
datum wavefields recorded on irregular surfaces.

In Ferguson (2006), the problems of irregular spacing of traces and statics are addressed
simultaneously using damped least-squares. Missing traces are replaced with null traces so
that the actual and nominal trace spacings are equal, and this produces an even-determined
inverse problem. Then, following the example of Kühl and Sacchi (2004), a weighting
matrix is introduced so that dead, edited, or padded traces are given zero weight during
inversion. A minimum-roughness criterion (Nemeth et al., 1999, reverse VSP example) is
then imposed to help ensure uniqueness, and a user parameterε controls how rough/smooth
the result appears. A regularized/datumed wavefield is thencomputed that minimizes a
combination of weighted prediction-error and solution roughness (Ferguson, 2006). To
accommodate statics correction, inversion is done in a modified version of the the layer-
by-layer approach of Reshef (1991).

Similar to other authors, Ferguson (2006) finds that computation of the Hessian in regu-
larization/datuming is very costly for large numbers of traces. Chavent and Plessix (1999),
for example, use efficient, partial mass-lumping to determine the Hessian associated with
least-squares Kirchhoff migration. Guitton (2004) approximates the Hessian and corrects
Kirchhoff imaging using banks of nonstationary match-filters. Kühl and Sacchi (2004) use
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efficient, Fourier-domain operators (Gazdag and Sguazzero, 1984; Margrave and Fergu-
son, 1999, phase-shift-plus-interpolation, and nonstationary-phase shift respectively) to
compute the Hessian associated with least-squares, double-square-root imaging.

In this paper, I begin with the general expression for regularization and redatum by
the Newton method developed by Ferguson (2006). I depart from this development at the
point of approximation of the Hessian. Where Ferguson (2006)offers a sparse matrix-
operator that is fast to compute, I develop an asymptotic approximation that I truncate. My
development here provides a prescription for fast calculation of the Hessian plus an analytic
framework for further study. In contrast, Ferguson (2006) provides only a prescription for
fast calculation plus a qualitative justification. The value in the current work, therefore,
lies with the analytic framework, and in the anticipation that an even faster perscription is
possible.

In addition to provision of an analytic framework for STAPPIthat has potential for
wider usage, I test STAPPI rigorously with real and synthetic data. I recognize that, though
the interpolation and statics aspects of STAPPI are combined, they may be separated, so I
test STAPPI first as an interpolator, and then as a combined interpolator and statics applier.
I demonstrate that, for∆z = 0, STAPPI reduces to an interpolator that is potentially much
faster than full STAPPI.

Based on synthetic models and data, I find that, under extreme velocity variation,
STAPPI run as an interpolator recovers reliable trace data for moderate and even severe
trace decimation, and I find that the approximate operator returns results near identical to
the exact operator∗.

I then add extreme variation in receiver depth to these models, recompute the data,
decimate, and I find that full STAPPI is able again to recover reliable trace data. Here,
however, differences between the approximate operator andthe exact operator are more
apparent - especially in their spectra. Significant differences, however, are restricted to
severe decimation. I find that as severity of decimation increases, maximum phase-angle
in the data decreases with increased frequency. I identify this relationship as the price paid
for irregular trace coverage.

Based on real data, I find that, as an interpolator(∆z = 0), STAPPI is quite tolerant of
strong velocity contrast and elevation change. I find that decreased phase-angle-with-with-
frequency is much less apparent on the real data compared to the synthetic data owing,
probably, to the reduced relative aperture of the real and synthetic data. Full STAPPI and
its approximation, implemented within the procedure of Reshef (1991), provide effective
interpolation and statics correction (based on a velocity model derived by turning-wave
tomography).

To test potentially cheap alternatives to STAPPI, I comparethese results to statics
correction by generalized phase-shift-plus-interpolation (GPSPI) (Gazdag and Sguazzero,

∗I definemoderate decimation as the setting 50% of traces to NULL randomly, andI definesevere as the
setting to NULL 80% of traces randomly.
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1984; Margrave and Ferguson, 1999) implemented within the procedure of Reshef (1991).
I interpolate the data with approximate STAPPI and then apply statics with GPSPI. I find
that considerable spurious-energy is present in the GPSPI output and that the resulting
spectrum is disordered. I repeat the experiment with conventional statics, and find, surpris-
ingly, that the GPSPI result is not much better than the statics result. I conclude that, as
a cheap alternative to STAPPI, interpolation by approximate STAPPI followed by conven-
tional statics is a good solution for these data when compared to interpolation and GPSPI.

To verify the expectation that GPSPI will interpolate as a natural outcome of statics
correction (Berryhill, 1985), I apply GPSPI to the uninterpolated data. Though traces are
interpolated, spurious energy very strong, and the spectrum is increased in disorder relative
to interpolation followed by GPSPI. I repeat this experiment with conventional statics, and
again, surprisingly, the spectrum is as disordered within the non-evanescent region as is the
GPSPI spectrum.

THEORY

Given monochromatic wavefieldψz, the Newton-method solution (Tarantola, 1987, pg.
251) for extrapolated wavefieldψz+∆z is (Ferguson, 2006)

ψz+∆z =
[

UA
−∆z We U−∆z + ε2Wm

]−1
UA
−∆z We ψz, (1)

whereWe andWm are a weighting operator and a smoothing operator respectively, andε2

is a scalar that controls the amount of smoothing (Menke, 1989, pg. 53 - 54). Operator
U−∆z and its adjointUA

−∆z are known as one-way operators that move wavefields distance
−∆z according to a user-defined model of seismic velocity (Margrave and Ferguson, 1999;
Ferguson and Margrave, 2002).

Computationally,U−∆z andUA
−∆z are matrices that can be very large. For 2D data,

these matrices may have hundreds or thousands of columns anda similar number of rows.
For 3D data,U−∆z andUA

−∆z are still matrices (Berkhout, 1985), but dimensions scale by
hundreds or thousands depending on acquisition design. Without approximation, compu-
tation of

[

UA
−∆z We U−∆z ψz (x′)

]

(x) within equation 1 is prohibitively expensive in 2D,
and impossible (practically speaking) in 3D currently.

Ferguson (2006) and Kühl and Sacchi (2004) explore different, ad-hoc approximations
to

S∆z = UA
−∆z We U−∆z, (2)

for use within Hessian of equation 1. Kühl and Sacchi (2004) use phaseshift-plus-interpolation
(PSPI) (Gazdag and Sguazzero, 1984) within a conjugate gradient framework, and Fergu-
son (2006) computes and applies directly only a limited number of diagonals forS∆z, and
then computes the inverse using an efficient LU operator. This approach results in a dip-
limited operator related to theω − x migration of Berkhout (1985). Moreover, though
LU inversion is implemented, a conjugate gradient solutionis contemplated by the author
currently, and it is expected to speed inversion considerably.

Though the development of Ferguson (2006) results in improvements in computational
efficiency, diagonal limiting provides little analytic insight, for example for error analy-
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sis, or for development of further improvements, so an analytic approximation toS−∆z is
desirable. From Ferguson (2006), given arbitrary wavefieldψz,

[S∆zψz (x′)] (x) =

1

(2π)4

∫

ψz (x′) e−i[kx,y−x′]e−i[k′

x
,x−y]α (y, k′x)∆z α̃ (y, kx)−∆z dkx dy dk

′
x dx

′, (3)

where extrapolatorα is
α∆z = ei∆zkz , (4)

and, for temporal frequency|ω| = ω, wavenumberskz are

kz (y, kx) =







sgn(∆z) k (y)
√

1 − |kx|
2

k2(y)
if |kx|

2

k2(y)
≤ 1;

i sgn(∆z) k (y)
√

1 − |kx|
2

k2(y)
if |kx|

2

k2(y)
> 1,

(5)

where
k (y, ω) =

ω

v (y)
, (6)

andv is seismic velocity that varies laterally within the thin slab.

As it is, operatorS∆z is extremely costly to apply. In 2D, for example, Ferguson (2006)
finds that cost is∝ N3 whereN is the number of traces. This cost is the cost of the inner
loop of the inversion, and outside it is a loop over temporal frequency, and then a loop
over depth. For hundreds of traces, frequencies, and depths, inversion of a single trace
gather can run for hours on a single processor. In 3D, cost of the inner loop remains
∝ N3, however, loops associated with the x-line coordinate are introduced, and cost of the
basic-operator increases toN6 assuming equal numbers of inline and x-line traces. For
N = 1000, for example, cost is∝ 1018 flops per frequency per depth.

APPROXIMATE HESSIAN

Because the Newton method implemented using equation 3 is costly to implement in
3D, some kind of approximation must be considered. Begin withequation 3, and introduce
coordinatesξ = k′x − kx, k′x = ξ + kx, anddξ = dk′x to get

[S∆z ψ (x′)] (x)

=
1

(2π)4

∫

ψ (x′) eiyξeix′kxe−ix[ξ+kx]α∆z (y, ξ + kx) α̃−∆z (y, kx) dkx dy dξ dx
′.

(7)

Expandα (ξ + kx)∆z as a Taylor series inkx according to

α (ξ + kx)∆z =
∞

∑

j=0

1

j!

[

∂
j
kx

α (kx)∆z

]

ξj, (8)

and then computey → ξ to eliminate an integral in favour of an infinite sum (that we may
expect to truncate later) so that

[S∆z ψ (x′)] (x) =
∞

∑

j=0

1

j!

1

(2π)4

∫

ψ (x′) e−ikx[x−x′]e−ix ξ ξj H (ξ, kx)j,∆z dkx dξ dx
′ (9)
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where

H (ξ, kx)j,∆z =

∫

eiyξ
[

∂
j
kx

α (y, kx)∆z

]

α̃ (y, kx)−∆z dy. (10)

Because, for generic functionf and its spectrumF , differentiation and integration are
related through

ij ∂j
xf (x) ↔

1

2π

∫

ξj F (ξ) e−iξ x dξ, (11)

we may computeξ → x to eliminate another integral

[S∆z ψ (x′)] (x) =
∞

∑

j=0

ij

j!

1

(2π)2

∫

ψ (x′) e−ikx[x−x′]
[

∂j
x hj (x, kx)∆z

]

dkx dx
′, (12)

where
hj (x, kx)∆z =

[

∂
j
kx

α (x, kx)∆z

]

α̃ (x, kx)−∆z . (13)

Our arrival at equation 12 involves elimination of two integrals (four integrals in 3D), for
the cost associated with differential operators and an infinite sum. Compared to an integra-
tion operator, a differentiation operator is real-valued,and when the series inj is truncated
atn << N , the number of non-zero diagonals is∝ n. Unfortunately, only a scalar reduc-
tion in computational cost is obtained here relative to equation 3. To reduce the order of
proportionality, the remaining integral overkx in equation 12 must be approximated. This
last point is explored with moderate success in Ferguson andFomel (2006), and a later,
more comprehensive analysis of how best to approximate equation 3 is planned for the
future. For now, it is important, and sufficient, to analyze equation 12 in its current form.

EXAMPLES

A number of synthetic examples and a real examples are presented here to demonstrate
STAPPI. The synthetic models are used to demonstrate specific properties of STAPPI in
a controlled way. First, ’do nothing’ examples are shown to demonstrate that the exact
and approximate STAPPI operators are equivalent when no statics and no interpolation is
required. Traces are then removed from the input datasets gradually to demonstrate the
interpolation aspects of exact vs. approximate STAPPI. Statics are then introduced to the
models, and the process of trace decimation is repeated.

For the real-data experiment, a common-source gather is obtained that is regularly sam-
pled but has significant statics effects. Then, a common-source gather that is poorly sample
is obtained, and locations of live traces in this gather are used to flag locations of live traces
in the common-source gather as ’live’. The remainder of traces in the common-source
gather are then set to zero. The undecimated version of the common-source gather is then
used as a ’control’, and the decimated version is used as input to STAPPI.
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Synthetic example

Finite-difference algorithmafd_shotre† from the CREWES library is used to gener-
ate synthetic data, and four models are considered here. Twoof the models (Figures 1a and
b) have constant-depth receivers, and as such, they are designed to test only the interpola-
tion part of STAPPI. Analytically, because there is no depthvariation in receiver locations,
∆z (x) = 0 in equation 1, andUA

−∆z = I andU−∆z = I, whereI is identity, and, for these
first two models, equation 1 becomes

ψz+0 =
[

We I + ε2Wm

]−1
We ψz (14)

- a prescription for interpolation only, andψz+0 is just the interpolated version ofψz.

The remaining models (Figures 2a and b) are identical to the first two (Figures 1a and
b), but they have significant variation in receiver depth (±150m over 10km). These models
are used to demonstrate simultaneous interpolation and statics correction.

Interpolation

Velocity variation in Figure 1a represents the velocity cross-section of dipping sedi-
ments, and it varies linearly between 2000 m/s on the left side and 3725 m/s on the right
side. The model in Figure 1b is the cross-section velocity of2000 m/s sediment (left side)
intruded by 3725 m/s salt (right side). Source/receiver geometry for these models is simple,
with 512 receivers spaced 20 m apart and buried at a depth of 2800 m. The source array
is buried 200 m below the receiver array at 3000 m, and it consists of a line charge plus 5,
evenly-spaced point charges. The line charge generates a seismic feature of low temporal
relief that is simple to interpolate, and the expectation isthat, even when decimation is ex-
treme, interpolation resolves this feature. The point charges, in contrast, generate crossed
diffraction-limbs plus high temporal relief, and they represent the greatest challenge to
interpolate. The expectation here is that interpolation ofthese features fails gradually as
decimation increases.

Synthetic data for Figure 1a, and their corresponding 2D spectra, are shown in Figure
3. Temporal frequencyω has range4 ≤ ω ≤ 36 Hz, and the evanescent boundary defined
by

αMAX kx,EV = ωEV , (15)

is annotated in red on the spectrum whereαMAX = 3725 m/s.

Figure 3a is the undecimated input. The linear event registers on the left side of this
figure att ∼ 0.1 s on the left, and att ∼ 0.05 s on the right, and the point sources register as
diffractions with minimum times that align with the linear event. Coherent arrivals below
∼ 0.7 s correspond to numerical artifacts from imperfect controlof boundary reflections.
It’s spectrum (Figure 3d) shows coherent energy within the evanescent region. Figure 3b is
the interpolated version of Figure 3a by the exact method (recall, there is no decimation or

†This algorithm is based on a five or nine point approximation to the Laplacian operator. Here, the 5-point
operator is used for efficiency at the expense of high-frequency.
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static shift in this example, so this is a ’do nothing’ application of STAPPI), and Figure 3c
is the approximate version. The valueERMS = 1.9282e−11 is RMS error between the exact
and interpolated output - the larger the number, the less reliable is the approximation. Both
the exact and approximate versions satisfy thedo no harm criteria for numerical processes
in that diffractions and the linear event are preserved, andtheir spectra are coherent within
the evanescent region; they are identical also (ERMS is very small), and this verifies, at
least, the numerical implementation of the approximation.

A filter is applied to the interpolated output to reduce evanescent energy, so the inter-
polated output differs from the input in the evanescent region.

Data are then decimated randomly from 512 traces to 261 traces (Figure 4a). The
linear event is now discontinuous, and diffractions are confused in appearance. The spec-
trum (Figure 4d) of the decimated input shows incoherence onboth sides of the evanescent
boundary. Exact interpolation (Figures 4b and e) returns a coherent linear event as ex-
pected, and diffractions arehealed. The spectrum has reliable energy up to± 0.6 mm−1

when compared the the spectra in Figure 3. This limit inkx corresponds to a limit on phase
angle according to Figure 6a where maximum phase-angle drops from 90 degrees at 22 Hz
to 38 degrees at 36 Hz. Further, coherence of events in the spectrum (Figure 4e), however,
decreases withω as an indication that, though much of the data has been recovered, inter-
polation robustness is bounded inkx andω by irregular trace spacing through an, as yet,
unknown process.

Interpolated data returned by approximate STAPPI are nearly identical (ERMS is small)
to the data of exact STAPPI. The same phase-angle limit is apparent, and event coherence
decreases similarly withω.

Decimation of the input data is then increased to severe, andthe original 512 traces are
decimated to 60 traces (Figure 5a). The linear event is severely disrupted, and diffractions
are no longer identifiable as such. Further, the spectrum of the decimated data is now quite
incoherent (Figure 5d) through the entirekx − ω range.

Exact and approximate interpolation (Figures 5b and c) reconstruct the linear event,
and both interpolations have constructed identifiable diffractions, though significant dis-
continuity is present on diffraction limbs. Analysis of thespectra verifies that, though not a
perfect reconstruction, fairly coherent-data is producedfor kx ± 0.3mm−1 to about 15 Hz,
and maximum phase-angle drops from 90 degrees as 12 Hz and decreases to 10 degrees at
36 Hz (Figure 6b).

Loss of steep dip, and loss of coherence with increasingω is apparent also on the salt
/ sediment example (Figures 7 through 9). The ’do nothing’ version of the salt / sediment
data (Figure 7) verifies the slight damping of the evanescentregion used in interpolation,
and it verifies the equivalence of the exact and approximate algorithms (ERMS is small).

Moderate decimation of the input data (Figure 8) is accommodated by both interpola-
tors, and interpolated results are coherent - even at the salt / sediment boundary where one
might expect difficulty due tocycle skipping for example. Spectra are phase-angle limited
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as for the previous model, and coherence decreases with increasingω.

Severe decimation (Figure 9) is also accommodated by both interpolators, and de-
creased phase-angle and decreased coherence with increased frequency are again apparent.

Statics and interpolation

Statics are now introduced to the interpolation problem. I repeat the previous experi-
ments on data that correspond to the models in Figures 2a and b. I follow the procedure
established for interpolation above, that is, I examine first the ’do nothing’ case first for
each model, though now ’do nothing’ involves correcting forstatics, and then I proceed
through moderate and severe decimation.

Undecimated data, then, that correspond to the model of Figure 2a are shown in Figure
10a and b (spectrum). The linear event is now a rugose arrivaldue to irregular receiver-
depth, and the spectrum is now disorganized even in the non-evanescent region. In the
absence of trace decimation, of course, exact and approximate STAPPI simply apply statics
according to

ψz+∆z =
[

UA
−∆z U−∆z + ε2Wm

]−1
UA
−∆z ψz, (16)

whereWe = I. Though no interpolation is done, static shifts are corrected, and the linear
event is recovered‡. Diffraction limbs appear cut-off, and this is verified through inspection
of the corresponding spectra (Figures 10e and f). Data coherence is preserved, however,
within the non-evanescent region, and the action of staticscorrection has simply cut the
spectrum to be closer to the evanescent boundary than is apparent in Figures 3e and f.

For moderate decimation (Figure 11), the input spectrum (Figure 11d) is disorganized
further relative to Figure 10d, though exact and approximate STAPPI return reconstructed
linear events and diffractions (Figures 11b and c). The corresponding spectra (Figure 11e
and f) exhibit coherence, maximum phase-angles, and decreased coherence-with-ω that
compares favourably to simple interpolation (Figures 10e and f).

For severe decimation (Figure 12), the input spectrum (Figure 12d) is, as expected,
disorganized further relative to Figure 11d. Exact and approximate STAPPI return recon-
structed linear events with some apparent jitter, and diffractions are reliable within further
restricted wavenumbers (Figures 12b, c, e and f). For the first time, significant differences
between the exact and approximate STAPPI are apparent, withthe approximate method
showing a hint of numerical instability on the right hand side of Figure 12c. Instability is
manifest in the spectrum of approximate STAPPI (Figure 12f)through increased disorga-
nization of the approximate STAPPI relative to the exact algorithm (Figure 12e).

For the salt / sediment model of Figure 2b, the complexity of the velocity model relative
to the linear variation causes significant challenge to STAPPI when statics are significant.
Exact STAPPI applied to the undecimated data shown in Figure13a registers a significant

‡For Figures 10 through 15, reference velocityαref = 2863 m/s and datumzdat =2960 m are used to
shift STAPPIed data away fromt = 0.
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amplitude anomaly as shown in Figure 13b at 2 km distance, andfor all times. This spu-
rious amplitude corresponds to a point charge that is located just on the salt / sediment
boundary (Figure 2b), and it underscores the non-unitary nature of extrapolators based on
Fourier integrals like equation 1 - the operator is unstablein the presence of extreme varia-
tion (Dellinger and Etgen, 1996; Margrave and Ferguson, 1999; Le Rousseau and de Hoop,
2001).

The linear event and diffractions shown in Figures 13b and c are recovered otherwise,
and their spectra (Figures 13e and f) are more organized after statics correction. Note,
careful experimentation, beyond the present exposition, with damping factorε in equation
1 will result in a compromise between lateral smoothness andreduction of spurious energy.
Unlike the simple interpolation,ERMS between exact and approximate STAPPI is quite
large, so effects of approximation, as expected, are largerin the presence of statics.

Under moderate decimation (Figure 14a and d), as shown in Figures 14b and c, exact
and approximate STAPPI return a coherent linear-event, diffractions are reconstructed, and
spectra are organized within the non-evanescent region (Figures 14e and f). The severity
of the spurious amplitude is reduced somewhat. Similar to previous examples, reduction in
maximum phase-angle is apparent in the spectra, and coherence decreases with increased
frequency.

Severe decimation (Figure 15a and d) exacerbates reductionin maximum phase-angle,
and coherence frequency, though the linear event is quite reconstructed with reasonable
fidelity. As was seen in approximate STAPPI for the linear model (Figure 12c), instability
is registered on the right side for all times.

Foothills dataset

STAPPI is applied here to common-source gather SIN 38 (Figure 16, and repeated in
18a) from the Foothills dataset (Stork, 1994). The gather isused as it is as both input
data for STAPPI, and as a control so that the performance of STAPPI is evaluated fairly.
As input, this gather is decimated such that live and dead trace locations match those of
common receiver gather CRG 625 (Figure 17) from the same dataset. The decimated gather
is shown in Figure 18b.

To demonstrate STAPPI, an experimental procedure similar to that of the synthetic
procedure is followed. That is, the interpolation aspects of STAPPI are investigated, and
the exact and approximate versions are compared. Then, fullSTAPPI in exact mode an
approximate mode are studied. Beyond the procedure for the synthetic data, however, the
STAPPI results are compared to more to more conventional approaches like GPSPI and
conventional statics correction.

Data and spectrum for common-receiver gather 38 (Figure 16)are shown in Figures
18a and e, and the evanescent boundary (equation 15) associated withαMAX = 4600 m/s
annotated in red on the spectrum. Data traces in this common-receiver gather are then set to
zero according to locations of zero traces in the common source gather of Figure 17. Thus,
a test dataset (Figure 18b and f) plus a control dataset (Figures 18a and e) for comparison
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are created.

The results of exact and approximate interpolation (no statics) of the test dataset (Figure
18b) are shown in Figures 18c and g and d and h. AnnotatedERMS values correspond
to the difference between the interpolated data and the control dataset shown in Figure
18a. As was seen in previous experiments with synthetic data, ERMS values for exact and
approximate interpolation are identical. Significant coherence is restored to linear events
(Figures 18c and d), and the region beyond the evanescent boundary is cleaned up (Figures
18g and h). Data appear low-frequency compared to the control dataset, but this must
be regarded as the trade off between event coherence and event sharpness. Similar to the
synthetic experiments presented previously, a phaseshiftevanescent filter is applied after
interpolation, and a significant portion of Rayleigh waves inthe control dataset are not
restored in the interpolated data.

Tests of full STAPPI are shown in Figure 19. Here, based on thevelocity model shown
in Figure 20, full STAPPI applied to the undecimated data of Figure 18a is used as the con-
trol dataset, andERMS are referenced to the control§. This control dataset for full STAPPI
is shown in Figure 19a. Compared with the Figure 18a, significant statics-correction is
apparent¶, and significant Rayleigh-wave energy is removed. Exact STAPPI applied to the
test dataset (Figure 18b) is shown in Figure 19b. Compared to the control (Figure 19a),
and consistent with results obtained previously with synthetic data, maximum phase-angle
(Figure 18f) is reduced, and coherence decreases with increasedω. Similar results are ob-
tained from approximate STAPPI (Figures 18c and g) and, interestingly,ERMS is reduced
for approximate STAPPI relative to the exact implementation.

For comparison, approximate STAPPI is applied to the interpolation-only result shown
in Figure 18d. That is, approximate STAPPI interpolation isdone first followed by approx-
imate STAPPI-statics (equation 16), and the result is shownin Figure 19d. ErrorERMS

is increased relative the (full) approximate STAPPI (Figure 19c), though maximum phase-
angle shows an apparent increase below 30 Hz. Above 30 Hz, thespectrum loses coherence
at a greater apparent rate.

Further comparative data are shown in Figure 21. In Figure 21a, GPSPI statics are
applied to data interpolated by exact STAPPI (Figure 18c) according to

ψz+∆z = UA
−∆z ψz,I , (17)

whereψz,I is the interpolated output from exact STAPPI, and where, effectively, when
compared to equation 1, no accommodation for missing tracesis made in equation 17 so
that (We = I), UA

−∆z U−∆z = I is assumed, andε = 0. In Figure 21a, thoughERMS is
not significantly higher than for exact STAPPI, serious, lowfrequency noise is apparent,
particularly, between 2 km and 4 km, and between 0 s and 1.5 s, and reflections in this
region are obscured relative to the result of exact and approximate STAPPI (Figures 19b
and c). Further, spurious diffractions are apparent above the first arrivals. Clearly, the cost

§Direct comparison between STAPPI corrected data and the undecimated input is, of course, complicated
by events that no longer line up int.

¶We have applied receiver statics only, so source statics will remove statics that remain.
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savings associated with exact interpolation of data followed by GPSPI statics rather than
the use of approximate STAPPI (Figure 19c) are overcome by inaccuracy.

Conventional statics are applied to the data shown in Figure 19b according to

ψz+∆z = Diag
(

UA
−∆z

)

ψz,I , (18)

where Diag extracts the diagonal of the GPSPI operator. The result is a a space-domain
operator that is non-zero only on the diagonal and corresponds to normal-incidence prop-
agation only. This statics result shown in Figures 21b and f compare favourable to the
GPSPI result (Figure 19a and e), and it is, perhaps, superiorowing to a reduced presence
of spurious diffraction above the first arrivals.

GPSPI is then applied to the raw input (Figure 18b, no interpolation) and the result
is shown in Figure 19c and g. Some rudimentary interpolationis apparent in this Fig-
ure, and significant Rayleigh-wave energy is removed. The spectrum, when compared to
the reference, is quite incoherent within the non-evanescent region. Significant, spurious
diffraction-energy is apparent everywhere associated with discontinuous data - the first ar-
rivals for example, and live traces that bound null traces. Similarly, conventional statics
is applied to the raw input, and the result is shown in Figure 19d and h. The spectrum, of
course, when compared to the reference, has no Rayleigh-wavereduction, as no evanescent
boundary is enforced. Note that within the non-evanescent region, the statics spectrum is
mostly similar to the GPSPI spectrum (Figure 21c).

ThatERMS for the experiments shown in Figure 21 are quite similar casts doubt on
the usefulness ofERMS as a measure of error and, perhaps, another measure must be
considered.

CONCLUSIONS

From the general expression for regularization and redatumby the Newton method of
Ferguson (2006), I have developed an asymptotic approximation that I truncate. The result
is a prescription for fast calculation of the required Hessian plus an analytic framework.
Though the result is not significantly more efficient than thealgorithm of Ferguson (2006),
the analytic framework provided here is important for the continued search for efficiencies.

Based on rigorous testing of real and synthetic data, I find that with statics correction
turned off, STAPPI is an effective and efficient interpolator. Further, under extreme velocity
variation, STAPPI run as an interpolator recovers reliabletrace data for moderate and even
severe trace decimation, and the approximate operator provides as good a result as the exact
operator.

With extreme variation in receiver depth added in, STAPPI recovers reliable trace data,
however, it is apparent that the interpolated/statics-corrected STAPPI approximation and
exact STAPPI diverge when trace decimation is severe. In terms of error, I find that, as
severity of decimation increases, maximum phase-angle in the data decreases with in-
creased frequency.

Using real data, STAPPI as an interpolator is shown to tolerate strong velocity contrast
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and elevation change, and decreased phase-angle-with-with-frequency is found to be much
less apparent compared to the synthetic data. Full STAPPI and its approximation, imple-
mented within the procedure of Reshef (1991), provide effective interpolation and statics
correction (based on a velocity model derived by turning-wave tomography).

Potentially cheap alternatives to STAPPI are tested. First, approximate STAPPI is
used to interpolate the real data, and this is followed by generalized-phase-shift-plus-
interpolation (GPSPI) implemented within the procedure ofReshef (1991). Spurious-
energy is found in the GPSPI output and the resulting spectrum is disordered relative to
exact and approximate STAPPI. Conventional statics are applied to the same data and the
result is found to be equivalent in quality to the GPSPI. A similar result is found when
GPSPI and conventional statics are compared on the uninterpolated data.
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FIG. 1. Velocity models with source/receiver geometry annotated. For visual clarity, every 20th
receiver is annotated - the actual trace spacing is 20m. a) Linear velocity variation. b) A step-
function velocity.
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FIG. 3. Control experiment (no decimation) for the source/receiver geometry of Figure 1a. a) Input
data with no trace decimation. b) Exact interpolation. c) Asymptotic interpolation. d) Spectrum of
a. e) Spectrum of b. f) Spectrum of c. The evanescent boundary is indicated by the red line.
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of c. The evanescent boundary is indicated by the red line.

T
im

e 
(s

)

Distance (km)

a)

0 2 4

0

0.2

0.4

0.6

0.8

1

b)

0 2 4

0

0.2

0.4

0.6

0.8

1

c)
E

RMS
 = 3.9634

0 2 4

0

0.2

0.4

0.6

0.8

1

F
re

qu
en

cy
 (

H
z)

Wavenumber (1/mm)

d)

−5 0 5
0

5

10

15

20

25

30

35

e)

−5 0 5
0

5

10

15

20

25

30

35

f)

−5 0 5
0

5

10

15

20

25

30

35

FIG. 12. STAPPI experiment for the source/receiver geometry of Figure 2a and severe trace-
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evanescent boundary is indicated by the red line.
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FIG. 13. Control experiment (no decimation) for the source/receiver geometry of Figure 2b. a)
Input data with no trace decimation. b) Exact STAPPI. c) Asymptotic STAPPI. d) Spectrum of a. e)
Spectrum of b. f) Spectrum of c. The evanescent boundary is indicated by the red line.
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FIG. 14. STAPPI experiment for the source/receiver geometry of Figure 2b and moderate trace-
decimation. (based on Figure 2b). a) Input data are decimated randomly from 512 traces to 261
traces. b) Exact STAPPI. c) Asymptotic STAPPI. d) Spectrum of a. e) Spectrum of b. f) Spectrum
of c. The evanescent boundary is indicated by the red line.
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FIG. 15. STAPPI experiment for the source/receiver geometry of Figure 2b and severe trace-
decimation. (based on Figure 2b). a) Input data decimated randomly from 512 traces to 60 traces.
b) Exact STAPPI. c) Asymptotic STAPPI. d) Spectrum of a. e) Spectrum of b. f) Spectrum of c. The
evanescent boundary is indicated by the red line.
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FIG. 16. Common-source gather SIN_38 from the foothills dataset (Stork, 1994) with elevation
profile and source location indicated. With the exception of the receiver gap around the source
location, trace spacing is 20 m.
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FIG. 17. Common-receiver gather CRG_625 from the foothills dataset (Stork, 1994). Nominal
source-spacing is 100 m. Due to extremes in surface conditions, the actual source-spacing varies
by ± 60 m as indicated by black dots.
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FIG. 18. Interpolation experiments for the foothills dataset. a) Input. b) Decimated input. c) Exact
interpolation of b). d) Asymptotic interpolation of b). e) Spectrum of a). f) Spectrum of b). g)
Spectrum of c). h) Spectrum of d). The evanescent boundary is indicated by red lines.
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FIG. 19. STAPPI experiments for the data shown in Figure 18a. a) Exact STAPPI applied to the
data shown in Figure 18a. b) Exact STAPPI applied to the data shown in Figure 18b. c) Asymptotic
STAPPI applied to Figure 18b. d) Asymptotic STAPPI applied to Figure 18d. e) Spectrum of a. f)
Spectrum of b. g) Spectrum of c. h) Spectrum of d. The evanescent boundary is indicated by red
lines.
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FIG. 20. Part of a velocity model obtained from the foothills dataset (Stork, 1994) by turning wave
tomography. The distance range of this model corresponds to the distance range of SIN_38 (Figure
16).
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FIG. 21. Statics applied to the data shown in Figure 18c and b. a) Wave-equation statics by GPSPI
applied to the data shown in Figure 18c. b) Conventional statics applied to Figure 18c. c) Wave-
equation statics by GPSPI applied to Figure 18b. d) Conventional statics applied to Figure 18b. e)
Spectrum of a. f) Spectrum of b. g) Spectrum of c. h) Spectrum of d. The evanescent boundary is
indicated by red lines.
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