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Investigation of the effects of two Kirchhoff migration algorithms 
on reflection amplitudes 

Zorondras Rodriguez and Gary F. Margrave 

ABSTRACT 
The effects of seismic migration on reflection amplitudes were tested with two 

Kirchhoff migration algorithms, one a simple diffraction stack algorithm and the other a 
full-featured, linear-interpolation Kirchhoff migration. A test acoustic velocity model was 
constructed and finite difference seismic forward modeling was done on the test velocity 
model to produce a zero offset section, which was then inverted by the two competing 
methods.  Least-squares scale factors were determined and applied to each image in order 
to best fit the images to the model reflectivities.  The least squares scalars for the two 
algorithms differed by almost five orders of magnitude, with neither being near unity.   
After scaling, the amplitudes of key reflectors in the scaled depth converted migrated 
sections were compared directly to the reflectivity that produced them.  The L2 Norms of 
the residual of the scaled amplitudes and the reflectivity were compared for key reflection 
events.  The diffraction stack method increases the contrast of the amplitudes between 
reflectors by 1.53-1.66 times, produces amplitudes that are erratic and uneven across 
reflectors as a function of position, and is highly sensitive to abrupt lateral changes in 
reflectivity. However the Kirchhoff migration algorithm decreases the contrast between 
amplitudes by 1.48-3.09 times, produces amplitudes which are fairly uniform and 
constant with respect to position along a reflector, and is also sensitive to abrupt lateral 
changes in reflectivity. Additionally comprehensive quantitative amplitude comparison 
and analysis test methodology was developed and described and is applicable to the 
testing of other varieties of migration algorithms. Finally two new CREWES MATLAB 
utilities vz2vt, and mig2depth, were developed to complete the testing, and are 
described. 

INTRODUCTION 
Post-stack migrated reflection amplitudes are routinely used in industry to evaluate 

prospective drilling locations.  The accuracy of these amplitudes, and in particular the 
accuracy of their contrast, is crucial to making informed drilling decisions.  However, 
equally important is knowledge of the target’s position, and both amplitude control and 
spatial positioning are key goals of seismic migration.    

Kirchhoff migration is a standard method of seismic migration used in industry.  
However, true reflection amplitudes are often obscured in the imaging processes due to 
different weighting and interpolation schemes used by competing algorithms.   

This study compares two different algorithms of Kirchhoff migration, namely a simple 
diffraction stack, and a more advanced implementation of Kirchhoff migration, in order 
to quantify the effects of weighting and interpolation on the amplitudes of a migrated 
section. In the process, several amplitude comparison techniques were developed. This 
study was conducted using the CREWES 2006 MATLAB toolbox; however, the 
techniques developed will also be used in the future to evaluate industrial codes.  
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In order to make comparisons of the effects of the different algorithms, a velocity 
model was constructed and a zero-offset section (ZOS) exploding reflector image was 
generated by finite difference modeling.  This ZOS image was then inverted by the two 
competing time-migration algorithms to produce a diffraction stack image and a 
Kirchhoff migration image.  These images were then converted to depth, and scaled in 
the least squares sense to the reflectivities that produced them.  Finally the amplitudes of 
the reflection events in each image were then quantitatively compared to the reflectivities 
expected from the velocity model.   This test methodology hence requires a method of 
computing the expected reflectivity from a given model, and two such methods were 
explored.  Finally two new CREWES MATLAB utilities were developed to complete the 
testing, these tools are vz2vt a program that re-samples the depth velocity model to a time 
velocity model, and also outputs a smoothed velocity model in time, and mig2depth, 
which converts a time section into depth given a velocity model in time.  

FINITE DIFFERENCE MODELING 
The CREWES finite difference modeling toolbox was used to generate the ZOS image 

used in the inversions. The CREWES finite difference toolbox includes the programs 
afd_vmodel which generates velocity models, afd_reflect which calculates a matrix of 
approximate normal incidence reflectivities from a velocity model, and afd_explode 
which generates a ZOS image of the velocity model.  The tools are described in Margrave 
(2003, pp 52-57). 

Finite difference forward modeling seeks discrete solutions to the scalar wave 
equation, given by 
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where ),,( tzxΨ  is the scalar wave field and ),( zxv is the instantaneous velocity from the 
velocity model. Equation 1 models the propagation of acoustic waves. 

THE VELOCITY MODEL 
An acoustic velocity model v(x,z) (Figure 1) was created using the CREWES 

MATLAB utility afd_vmodel. This model while relatively simplistic contains two 
dipping contacts representing either angular unconformities or faulted horizons.  It also 
contains a channel feature, and a broad rounded anticline fold with steeply dipping limbs 
on either end.  
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FIG. 1.   Test Model #01 instantaneous acoustic velocity matrix. 

NORMAL INCIDENCE REFLECTIVITY 
Normal incidence reflectivity at an interface between two acoustic media is defined as, 

(e.g. Margrave, 2005, p1-22) 
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where 

 2,1== jI jjj αρ  , (3) 

and where 1I  is the acoustic impedance on the top side of the interface and 2I  is the 
acoustic impedance on the lower side of the interface, ρ  the density and α the acoustic 
velocity of each medium as denoted by the subscript. 
 

A program to compute a reflectivity matrix using the above equations was 
implemented as norm_reflect. The program norm_reflect is capable of also including a 
density model, however for our models we assume a constant uniform density ρ =1 
kg/m3 for all points in the model matrix.  The normal incidence reflectivity R(x,z) of  test 
velocity model #01 is seen in Figure 2.   
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              FIG. 2.  Normal Incidence Reflectivity R(x,z).  Color bar is reflectivity. 

GRADIENT REFLECTIVITY 
The gradient reflectivity of a continuous impedance model can be approximated by 

 zxzxI
dz

zxdIsignzxR ΔΔ∇≈ )),(log()),((
2
1),(  (4) 

Equation 4 is implemented by the CREWES MATLAB program afd_reflect. All 
finite difference modeling and inversion done in this work was based upon the gradient 
reflectivity program afd_reflect.  
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FIG. 3.  Gradient Reflectivity of Test Velocity Model #01. 

EXPLODING REFLECTOR SEISMOGRAM 
The exploding reflector ZOS image of the test velocity model was computed with the 

finite difference utility afd_explode, and is seen below in Figure 4.  It is this image that 
we attempted to invert by Kirchhoff migration and the diffraction stack method.   

The idea behind the exploding reflector model, is that each reflection point of non-
zero reflectivity will act as the source of a wave at time t = 0.  Namely a wave will 
propagate from every reflection point, and the superposition of these wave sources 
creates a wavefront which propagates to the surface. The amplitudes and of the 
wavefronts will be recorded by geophones as they reach the surface.  Since this is -way 
propagation, the velocities will be slowed by a half to simulate the two way travel time to 
each reflection point. 

The exploding reflector model (ERM) yields an image which very nearly 
approximates the image of a zero offset stack section (ZOS) (Margrave, 2003, pg 133). 
At the time of explosion the wavefield has the shape of the geology.  This is the idea that 
is used in wavefield marching migration algorithms which seek to march the wavefield 
backwards from the surface in order to determine the original shape of the geology.  
However for our purposes we will consider it to be a close approximation to an NMO 
(Normal Move-Out) corrected stacked seismic section.  The wave propagation in this 
case is calculated by time stepping at each point, using an initial wavefield snapshot of 
zero or no explosion followed by a secondary snapshot of explosions at the positions of 
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the reflectors. These impulsive sources at the reflector positions are scaled by the 
reflection coefficients and the next wavefield snapshot is calculated by finite difference. 

For our modeling we used a 9-point Laplacian operator, a time stepping of Δt=.0005s, 
and a horizontal grid spacing of Δx=5m and a sample rate of 5 ms. The exploding 
reflector model of the test velocity model is seen in Figure 5 below.  

 

FIG. 4. Exploding reflector model of the test velocity model. Filtered with an Ormsby [10,15,50,60] 
wavelet. 9-point Laplacian, .0005s sample rate, 5m horizontal grid spacing. Colorbar is amplitude. 

RESAMPLING V(X,Z) TO V(X,T) AND RMS VELOCITIES 
In order to do either the Kirchhoff migration or the diffraction stack migration, it was 

necessary to have RMS velocities in time defined for all points in the ZOS image matrix.  
Since the ZOS image is in time and horizontal distance and the test velocity model is in 
depth and horizontal distance, the velocity model was resampled from a depth model 
v(x,z) to a time model v(x,t).   RMS velocity is defined as (e.g. Margrave, 2005) 

 ∫=
τ

τ
τ
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 Equation 5 is performed on each column of the time resampled velocity matrix with the 
CREWES utility vint2vrms to create a ),( τxVrms  matrix.  This RMS velocity field is 
shown in Figure 5 below. 
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FIG. 5.  RMS velocity field ),( τxVrms  for test velocity model #01. 

This smoothed velocity model in time was computed with a newly developed 
MATLAB utility named vz2vt.                

SCATTER POINTS AND COMMON DEPTH POINT TRAVEL TIMES 
A subsurface scatter point, or scatterer, is a differential element with reflectivity, 

which upon the arrival of an incident wavefront the element scatters the wave energy in 
all directions as depicted in Figure 6.   

If the scatter point is located in a homogenous half space then wavefronts are spherical 
and this energy is backscattered along the straight ray paths shown in Figure 7.  The 
amplitude of the backscattered energy depends on the reflectivity of the scatter point and 
the length of the travel path due to spherical spreading, which is proportional to the 
inverse of the travel path length.  The reflectivity of the scatter point for normal incidence 
is modeled as in Equation 2, but for other angles of incidence may be modeled using the 
Zoeppritz equations for plane waves (e.g. Krebes 2006).  However for our modeling and 
inversion the gradient reflectivity of Equation 4 suffices.     



Rodriguez and Margrave 

8 CREWES Research Report — Volume 19 (2007)  

 

FIG. 6. Diagram of a single scatter point and reflected energy. 

Such a scatter point may be thought of as a common depth point (CDP) for the energy 
that arrives to the surface along each of the scattered wave paths and recorded by 
geophones. The two-way traveltime of these waves along a ray path with half-offset x 
and depth z and centered at position x0 in a homogenous half space with acoustic velocity 
v is given by the travel time equation 
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is the vertical two-way travel time.   

In the case of vertically heterogeneous, laterally homogeneous media, wavefronts do 
not follow straight ray paths but rather curved Snell’s law ray paths.  In this case we may 
imitate the Snell’s Law traveltimes by imagining a fictitious wavefront that travels along 
a straight line path from the scatter point to the receiver at a suitable replacement 
velocity.  The most suitable velocity for a replacement velocity is the RMS velocity 
which gives us 
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If the media is vertically and laterally heterogeneous horizontal slowness is no longer 
constant and wave fronts follow more complicated paths.  However in this case we 
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approximate the travel time again by using Equation 8 as a reasonable approximation 
only with )( 0TVrms  replaced by )( 0,0 TxVrms , i.e. 
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DIFFRACTION STACK AND KIRCHHOFF TIME MIGRATION 
If we consider reflection surfaces as collections of scatter points, then the signal 

recorded at the surface may be modeled as a superposition of backscattered waves 
arriving at the geophone from each scatter point at times given by Equation 9.  All of the 
scatter points with rays which arrive at x with travel timeτ  sum to give the 
amplitude ),0,( τxA . Hence the true amplitude ),( 00 zxA , which is the reflectivity at this 
point, has been spread out on a diffraction hyperbola. These spread out amplitudes are 
then summed by superposition with the other hyperbolae crossing these points.   

To reconstruct the original reflectivity at position ),( 00 Tx in the ZOS image by 
inversion we need to build a diffraction hyperbola specified by Equation 9 and go to each 
point on the curve and without knowing the reflectivity ),( 000 TxA , somehow extract it 
from each superposition sample.  

However, not all points on the diffraction curve will coincide with a sample point, so 
we must also interpolate a value for the curve by using the samples nearby to it.  This 
may be done in a variety of ways from nearest neighbor interpolation to linear or cubic 
spline interpolation.  

Next we make an educated guess of how much of that sample belongs to the 
diffraction curve associated to ),( 00 Tx .  This is done by weighting how much of that 
sample we take or perceive to be part of the diffraction event associated to ),( 00 Tx .  The 
sum of all of these spread out pieces should then add up to the desired value of the 
reflectivity ),( 000 TxA .  Although there is no way to know how much of the amplitude of 
the sample selected represents what was contributed by the particular diffraction curve 
corresponding to reflectivity 0A . A common weighting used to for this is the cosine 
weighting (Bancroft, 2005) 
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One must be aware that a simple diffraction summation will not approximate the 
reflectivities properly for dipping reflectors as it is well known that the proper weights 
are dip dependent.   The above ideas were implemented in a program named difstack.m 
using the cosine weighting and nearest neighbor sample interpolation.  This program was 
implemented using pseudo code found in (Bancroft, 2005, p 4.14).   
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This simple method was tested against the post-stack Kirchhoff time migration routine 
kirk_mig, as developed by Xinxiang Li, J.C. Bancroft and G.F. Margrave (1996), which 
is a migration utility in the CREWES MATLAB toolbox. 

DEPTH CONVERSION OF TIME MIGRATED IMAGES  

In order to make comparisons between the gradient reflectivity matrix and the 
migrated images each image was converted from time into depth using a newly 
developed MATLAB utility named mig2depth.  This conversion from time to depth was 
done on a trace by trace basis using the resampled instantaneous velocity V(x,t) matrix of 
in accordance with vertical traveltimes, where the time depth conversion depends on the 
following equation (Margrave, 2005, pg 6-7), 

 ∑∫ ⋅≈=
ττ

τ
00

)()()( dttVdttVz insins  (15) 

This depth section was subsequently windowed to a maximum depth of 2000m by 
discarding samples below this depth as extraneous. 

LEAST-SQUARES MINIMIZING SCALAR 
Initially both the seismic image of the Kirchhoff time migrated depth converted 

section and the depth converted diffraction stack time migrated image have amplitudes 
which are well outside of the interval [-1, 1] that characterizes reflectivity.  In order to 
compare amplitude results between the two images and the gradient reflectivity matrix, a 
least squares scalar λ was determined which minimizes the following equation 

 ∫∫ Ψ−=Ψ−
2

22 ))0,,(),((),(),(
R

dzdxzxzxRzxzxR λλ  (16) 

where ),( zxR is the reflectivity matrix and ),( zxΨ is the seismic image to be scaled. 

For a discrete matrix Equation 16 may be approximated as 
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for two M x N matrices ji,Ψ  and jiR ,  representing the discrete versions of the 
continuous scalar fields ),( zxΨ  and ),( zxR .  The scalar λ  which minimizes Equation 17 
is easily derived upon differentiating equation 17 with respect to λ  and setting the 
derivative equal to zero.  This least squares scalar is found to be 
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The scale factor λ  was determined from windowed versions of each migrated matrix 
upon comparison with the gradient reflectivity matrix, and then applied as the minimizing 
bulk scalar in order to approximately compare these amplitudes to the reflectivities that 
produced them.  The least-squares minimizing bulk scalar for the Kirchhoff time 
migration image matrix was determined to be 318.04, and the least squares minimizing 
bulk scalar for the diffraction stack image was determined to be 0.02389.   These scalars 
were then applied to each image matrix to scale the amplitudes into the range of the 
gradient reflectivity for comparison and analysis.   The least-squares scaled depth 
converted Kirchhoff time-migrated image of the exploding reflector model is seen in 
Figure 7, while the diffraction-stack, time-migrated, least-squares scaled image of the 
exploding reflector model is seen in Figure 8 below. 

 

 

FIG. 7 Depth converted Kirchhoff Migration with least squares scaling. 
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FIG. 8. Depth converted diffraction stack migration with least squares scaling. 

 

 

QUALITATIVE ANALYSIS OF MIGRATION IMAGES 
It is immediately clear from these images upon comparison with the gradient 

reflectivity image that the Kirchhoff image has values which throw off the linear scaling 
and cause the image to look yellow.  These large negative values which are near surface 
migration artifacts can be seen as the blue strip across the top of the matrix near a depth 
of zero.  Upon discarding the first 10 rows of each matrix the differences in amplitudes 
become much clearer.  A side by side comparison to reflectivity is seen in Figure 9.  This 
reveals that the contrast between reflectors in the diffraction stack image seems to be 
more accurate than that displayed in the Kirchhoff migration image.  In particular we see 
that the first horizontal and second dipping reflection event appear to be too strong in the 
Kirchhoff image and just right in the diffraction stack image as compared with the 
reflectivity.     



Amplitude effects of two Kirchhoff algorithms 

 CREWES Research Report — Volume 19 (2007) 13 

 

FIG. 9. Side by side comparison of migration images with reflectivity matrix, the first 10 rows of 
each matrix have been discarded and the positions of the reflectors depth matched to the 
reflectivity matrix.  color bar is reflectivity. 

QUANTITATIVE ANALYSIS OF MIGRATION IMAGES 
In order to quantitatively compare the amplitude results from each image with the 

gradient reflectivity, amplitude slices were made through the first horizontal reflector, the 
2nd dipping reflector, the 3rd horizontal reflector containing the channel feature and 
laterally varying reflectivity, and finally through anticline reflector were made.  Peak 
amplitudes from each slice matrix were then extracted for comparison to the reflectivities 
and the norm of the residual calculated.   These slices and plots of the peak amplitude 
extractions are seen in Figure 10 to Figure 16 below. 

In Figure 11 we see the reflectivity estimates from the first horizontal reflector.  Here 
we see that the amplitudes of the scaled diffraction stack image fit the gradient 
reflectivity values closely, whereas the Kirchhoff migration amplitudes fit further away.  
We also see that the amplitudes of the Kirchhoff migration image along this reflector are 
smooth and constant whereas there are fluctuations from the mean along this reflector in 
the diffraction stack image. 

In Figure 13 we see the reflectivity estimates from the peak samples of the 2nd 
reflector.  We see bandlimited estimates of the bimodal reflectivity displayed along this 
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reflector in both the Kirchhoff and diffraction stack reflectivity estimates.  Once again the 
Kirchhoff migration reflectivity estimates remain more constant as a function of position 
than the diffraction stack estimates which seem to increase in magnitude down dip.   Both 
estimates drop off rapidly towards either end of the section as the aperture effect 
truncates the diffraction energy that would need to be summed to produce proper 
reflectivity estimates.  However this aperture effect is more dramatic down dip than it is 
near the shallower end of the dipping reflector due to truncation. 

In Figure 15 we see the reflectivity estimates from the 3rd reflector which contains a 
lateral drop in impedance at about 400m and a lateral increase in impedance at around 
800m.   Both the Kirchhoff and diffraction stack reflectivity estimates seem to do equally 
as well here, with the Kirchhoff estimates being slightly closer to the true reflectivity.  
However it is interesting to note the large deviation of both estimates from the reflectivity 
near the two discontinuities. This large excursion seems to suggest that both methods are 
sensitive to abrupt lateral changes in reflectivity. 

Finally in Figure 17 we see the reflectivity estimates taken from the anticline reflector.  
These extractions were taken from the maximum amplitudes from each column from the 
slices from Figure 16.  Here we see that the Kirchhoff reflectivity estimates better fit the 
values from the gradient reflectivities than do the diffraction stack reflectivity estimates. 

In order to quantify the closeness of fit between the amplitudes along each reflector in 
migration images and the gradient reflectivity, the residual or difference between the two 
values was taken and the L2 norm of these residuals determined.  This data is collected 
below in Table 1.    If the fit was perfect the residual would have zero length so in the 
best case an L2 norm of zero would be found.   

Table 1. L2 norm of the residual between peak amplitudes the gradient reflectivity values along 
each reflector. 

 Kirchhoff Norm of Residual Diffraction Stack Norm of Residual
Reflector 1 1.45157 0.14919 

Reflector 2 1.92391 1.22319 
Reflector 3 0.72990 1.01753 

Reflector 4 0.65713 1.39280 
 

From Table 1 we see that the gradient reflectivity is closer fit along reflectors 1 and 2 
by the diffraction stack amplitudes, and closer fit along reflectors 3 and 4 by the 
Kirchhoff migration amplitudes. 
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FIG. 10. Horizontal slice matrices through the first horizontal reflector in each reflectivity matrix.  

 

FIG. 11. Plot of peak amplitudes extracted from horizon slices through reflector 1. Kirchhoff 
migration amplitudes in red, diffraction stack in blue and gradient reflectivity in black. 
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FIG. 12. Slice matrices through the 2nd dipping reflector in each reflectivity and migration matrix.  

 

FIG. 13. Plot of peak amplitudes extracted from horizon slices through reflector 2.  Kirchhoff 
migration amplitudes in red, diffraction stack in blue and gradient reflectivity in black. 
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FIG. 14. Slice matrices through the 3rd reflector in each reflectivity and migration matrix.  

 

FIG. 15. Plot of peak amplitudes extracted from horizon slices through reflector 3.  Kirchhoff 
migration amplitudes in red, diffraction stack in blue and gradient reflectivity in black. 
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FIG. 16. Slice matrices through the antiformal reflector in each reflectivity and migration matrix. 

 

FIG. 17. maximum amplitudes from each column in the anticline slices vs. position. Kirchhoff 
migration amplitudes in red, diffraction stack in blue and gradient reflectivity in black. 

Next the mean value of each reflectivity estimate was calculated from these 
extractions on well chosen intervals that excluded the edge values, namely from about 
200 to 1800m for reflectors 1 through 3 and from about 450m to 1100m for the values 
from the anticline reflector 4 amplitude extractions.   These mean values are collected in 
Table 2 below. 
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Table 2. Mean values of peak amplitudes from Reflectors 1-4 in Migration and Reflectivity 
Matrices. 

 Kirchhoff 
Migration 

Diffraction 
Stack 

Gradient 
Reflectivity 

Normal Incidence 
Reflectivity 

Reflector 1 Mean 0.09991 0.03359 0.02634 0.05263 
Reflector 2 Mean 0.15920 0.12324 0.05962 0.11111 

Reflector 3 Mean 0.06424 0.07920 0.03576 0.07134 
Reflector 4 Mean 0.13146 0.21515 0.10504 0.17647 

 

Finally the amplitude contrast between the reflectors is compared by dividing the 
mean value of the stronger reflector by the mean value along the weaker reflector as in 
equation 19.  Here we define the reflector contrast as 

 
reflectorweaamplitudemean
reflectorstrongeramplitudemeancontrast

ker
=  (19) 

Table 3. Contrast between reflector mean amplitudes in each reflectivity matrix. 

Contrast Normal Incidence Gradient Reflectivity Kirchhoff Migration Diffraction Stack

Reflector 2:Reflector 1 2.11111 2.26363 1.59339 3.66866 
Reflector 4:Reflector2 1.58824 1.76172 0.82573 1.74584 

Reflector4:Reflector 1 3.35294 3.98789 1.31572 6.40488 
 

 From Table 3 we see that the contrast between the reflectors has in general been 
decreased in the Kirchhoff migration image whereas these contrasts in amplitude have 
been increased in the diffraction stack image as compared with the gradient reflectivity.  
The amount of this increase and decrease may be quantified by comparing it to the 
contrasts in the gradient reflectivity. Here we define the dynamic range expansion factor 
α to be 

 
reflectorselinContrast
reflectorsageinContrast

mod
Im=α  (20) 

In a best case scenario α =1 and there is no change in the dynamic range between the 
model and the inverted data.  This value is calculated for each of the contrasts between 
reflectors as given in Table 3, and collected in Table 4 below. 
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Table 4. Dynamic range expansion factors for both migration methods for different reflectors. 

α  Kirchhoff Migration Diffraction Stack 

 Reflector 2:Refelector 1 0.70391 1.62070
Reflector 4:Reflector 2 0.46871 0.99098

Reflector 4:Reflector 1 0.32993 1.60608
 

Here we see that the Kirchhoff migration method generally decreased contrasts 
between the reflectors by a factor anywhere between 1.4 to 3 times, hence compressing 
the dynamic range of the image as compared with the gradient reflectivity.  On the other 
hand the diffraction stack migration method either increased the contrast between 
reflectors by 1.6 times or held it nearly constant thus expanding the dynamic range of the 
image.   

CONCLUSIONS  
In this paper we tested two migration algorithms to determine their relative effects on 

the output amplitudes in the migrated images given specific model input reflectivities 
derived from the test velocity model.  The two algorithms tested were a simple diffraction 
stack algorithm difstack, and a fully featured CREWES Kirchhoff migration algorithm 
kirk_mig with linear interpolation, and default settings.   A least squares scale factor of 
318.04 was computed for the Kirchhoff migration image and a scale factor of 0.02389 
was computed for the diffraction stack image.  Once normalized by these scale factors, 
amplitude slices were made through four key horizons and the peak amplitudes from the 
migration images directly compared to the reflectivities that produced them.   It was 
found that the diffraction stack reflectivity estimates best fit reflectors 1 and 2 while the 
Kirchhoff migration reflectivity estimates had a closer fit to the gradient reflectivity for 
reflector 3 and the anticline reflector 4.   Reflector contrast was defined and calculated for 
the mean values of reflector pairs in each reflectivity matrix.   Finally the dynamic range 
expansion factor was defined and calculated for reflector pairs in both the Kirchhoff 
migration image and for the same pairs in the diffraction stack image.  It was found from 
this expansion factor that the Kirchhoff migration method seemed to compress the 
dynamic range of the amplitudes by anywhere from 1.4 to 3 times whereas the diffraction 
stack method tended to expand the dynamic range by about 1.6 times.  It was also seen 
that the Kirchhoff migration method produces amplitudes which are more constant and 
even as a function of position, whereas the amplitudes of the diffraction stack were seen 
to be more uneven erratic and varying as a function of position. It was also demonstrated 
that both methods are sensitive to abrupt lateral changes in reflectivity.   

The workflow presented in this paper for quantitative post-stack migration amplitude 
comparison consisted of the calculation of the reflectivity, depth conversion of the 
migrated images, determination of the least squares scale factor, scaling the images by 
this scale factor to determine reflectivity estimates, matrix slicing and horizon amplitude 
extractions, careful selection of the bounds on which to compare these reflectivity 
estimates, and the determination of reflector contrast and dynamic range expansion 
effects.  These techniques may be applied to the amplitude analysis of other post-stack 
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migration algorithms, and may be modified in for the analysis of pre-stack migration 
algorithms including industrial migration algorithms.    

FUTURE WORK 
Future research will focus on extensions of the test methodologies presented in this 

paper to 2D and 3D prestack migration algorithms, including Fourier domain methods 
such as the Gazdag phase shift method, and time domain finite difference methods such 
as reverse time migration and one way 15 degree finite difference method.  Both time and 
depth migrations will be tested with varying parameters including random noise, and shot 
receiver geometries.  Finally industrial versions of the aforementioned migration methods 
will be tested.  
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