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ABSTRACT

We develop a procedure for building a wavefield extrapolator using a Fourier-like trans-
form based on solutions to the Sturm-Liouville problem. This is a report on the NSERC
summer research project of the second author.

INTRODUCTION

One approach to seismic imaging is to use numerical wavefield extrapolators to model
the propagation of a seismic wave through a complex medium, and using the results to
deduce the reflectivity events within the medium. Designing an efficient, accurate extrapo-
lator is a challenging project, and many trade-offs are made in practice to produce software
code that works well enough for the project at hand.

In this paper, we are interested in pursuing a method to find an exact extrapolator for
certain interesting, but relatively simple media – in particular, the case of a transversely
inhomogeneous medium. The goal is to produce models for which we have exact solutions,
and use them to test various extrapolators and establish their performance by making direct
comparisons with the exact solution. This paper is a preliminary report, on a mathematical
method for computing exact solutions in the transversely inhomogeneous case.

The basic approach is to use separation of variables to reduce the wave equation to a
Sturm-Liouville differential equation, plus a number of simple harmonic equations. We
then create a transform based on the solutions to the Sturm-Liouville DE, as well as its
inverse, then use these transforms to give the complete solution to the wave equation.

We first demonstrate how this works in the 1D wave equation. We give a complete
result for the two-block velocity profile, to illustrate the idea, and provide both asymmetric
and symmetric transforms. We then suggest how to proceed in the 2D wave equation. More
work is needed to solve this case.

THE 1D WAVE EQUATION

Beginning with the 1D wave equation

∂2u

∂x2
=

1

c(x)2

∂2u

∂t2
, (1)

we separate variables by looking for solutions of the form u(x, t) = X(x)T (t) to obtain
two linked ordinary differential equations (ODEs)

X ′′ +
ω2

c(x)2
X = 0, T ′′ + ω2T = 0, (2)
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where ω2 is the separation constant. The first equation for X is a Sturm-Liouville equation,
a well-studied ordinary differential equation† that can be solved explicitly for many reason-
able choices of velocity profiles c(x). Since this is a second order equation, there are two
independent solutions for each choice of the parameter ω2; by separating the negative and
positive values of ω, we identify a parameterized family of solutions Xω(x), indexed by
real values for ω. The second equation is solved in complex exponential form T (t) = eiωt.

For fixed ω, two solutions are obtained, Xω(x)eiωt and Xω(x)e−iωt. By integrating
linear combinations of these two solutions, over all values of ω, we obtain the general
solution to the 1D wave equation in the form

u(x, t) =

∫
R

a(ω)Xω(x)eiωt + b(ω)Xω(x)e−iωtdω, (3)

where a(ω), b(ω) are arbitrary functions.

To determine a, b, additional conditions such as the initial value equations

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x) (4)

are required.

Plugging in to the previous equation, one obtains

u0(x) =

∫
R
[a(ω) + b(ω)]Xω(x)dω, u1(x) =

∫
R

iω[a(ω)− b(ω)]Xω(x)dω. (5)

Let’s assume that u0, u1 can be written uniquely as a linear combination of the Sturm-
Liouville functions, with coefficients û0(ω), û1(ω) respectively, thus

u0(x) =

∫
R

û0(ω)Xω(x)dω, u1(x) =

∫
R

û1(ω)Xω(x)dω. (6)

We obtain two simple linear equations,

û0(ω) = a(ω) + b(ω), û1(ω) = iω[a(ω)− b(ω)] (7)

which are easily solved for the unknowns a, b.

The mathematically challenging part is to find a definition of the 1D transform f(x) 7→
f̂(ω) so that we can write, uniquely,

f(x) =

∫
R

f̂(ω)Xω(x)dω. (8)

This will be the transform applied to both u0 and u1, as we saw in Eqn. 6.

†See Courant and Hilbert (1937).
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THE 1D TRANSFORM: TWO-BLOCK VELOCITY PROFILE

We look for a transform of the form

f̂(ω) =

∫
R

f(x)

c(x)2
X ′

ω(x)dx, (9)

where X ′
ω(x) is another parameterized family of solutions to the Sturm-Liouville problem.

The motivation for this form comes from the mathematical properties of certain positive
definite forms related to the Sturm-Liouville equation. We omit the details of the motiva-
tion, but simply observe in the following that we can successfully find a transform in this
form.

To see how this works, consider a piecewise constant velocity profile of the form

c(x) =

{
c1 if x < 0
c2 if x > 0

(10)

For each parameter ω, a solution to the related Sturm-Liouville equation is given by

Xω(x) =

{
e

i ω
c1

x if x < 0
c1+c2
2c1

e
i ω

c2
x

+ c1−c2
2c1

e
−i ω

c2
x if x > 0

, (11)

where the constants (c1 ± c2)/2c1 were chosen so that Xω(x) is continuous at x = 0, as is
its first derivative. A dual family of solutions is defined by

X ′
ω(x) =

{
c2+c1
2c2

e
i ω

c1
x

+ c2−c1
2c2

e
−i ω

c1
x if x < 0

e
i ω

c2
x if x > 0

(12)

Because the X ′
ω(x) are piecewise complex exponentials, the transform defined in Eqn. 9

is closely related to the Fourier transform. In fact,

f̂(ω) ≡
∫

R

f(x)

c(x)2
X ′

ω(x)dx (13)

=
c2 + c1

2c2
1c2

F−(
ω

c1

) +
c2 − c1

2c2
1c2

F−(− ω

c1

) +
1

c2
2c2

F+(
ω

c2

), (14)

where F+(ω) is the usual Fourier transform of function f restricted to the positive real
numbers, and F−(ω) is the Fourier transform of f restricted to the negative reals. It is
routine to verify that the inverse equation 8 is satisfied, up to a constant. In fact, we have

f(x) = c

∫
R

f̂(ω)Xω(x)dω., (15)

where the constant c is just

c =
c1c2

c1 + c2

1√
2π

. (16)

CREWES Research Report — Volume 19 (2007) 3



Lamoureux et. al

SYMMETRIC TRANSFORMS

It is interesting to note that sometimes it is possible to choose the functions Xω(x), X ′ω(x)
to be the same; that is, so that the same function appears in both the forward transform

f̂(ω) =

∫
R

f(x)

c(x)2
Xω(x)dx (17)

and its inverse
f(x) =

∫
R

f̂(ω)Xω(x)dω. (18)

In the case of the two-block velocity model, we look for solutions of the form

Xω(x) =

{
Ae

2πi ω
c1

x
+ Be

−2πi ω
c1

x if x < 0

Ce
2πi ω

c2
x

+ De
−2πi ω

c2
x if x > 0

(19)

where we have rescaled the parameter ω to measure wavenumber in natural units rather
than in radians. Plugging this form into Eqns. 17,18 we obtain three equations

A2 + B2 = c1, C2 + D2 = c2, AD + BC = 0 (20)

while requiring continuity of Xω(x) and its derivative, at x = 0, gives two equations

A + B = C + D,
A−B

c1

=
C −D

c2

. (21)

This gives five equations in four unknowns, which usually is not solvable. We got lucky,
though, and find the following values give a solution:

A =

√
c1√
2

√
c1 +

√
c2√

c1 + c2

(22)

B =

√
c1√
2

√
c2 −

√
c1√

c1 + c2

(23)

C =

√
c2√
2

√
c1 +

√
c2√

c1 + c2

(24)

D =

√
c2√
2

√
c1 −

√
c2√

c1 + c2

. (25)

Thus in the two block velocity model, we are able to give explicitly a symmetric trans-
form and inverse, using a single family of solutions to the Sturm-Liouville problem.

NUMERICAL WORK

Using MATLAB, we have verified that the 1D transform defined above works as de-
scribed. That is, we have an expansion of any function in terms of solutions to the Sturm-
Liouville problem, with the transform defined through the dual solutions.

We also tested the symmetric solution, where the same functions Xω = X ′
ω are used in

the forward and inverse transform, and numerically verified its properties.
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THE 2D WAVE EQUATION

Consider solving the 2D wave equation

∂2u

∂x2
+

∂2u

∂z2
=

1

c(x)2

∂2u

∂t2
, (26)

in spatial variables x, z, where the velocity of propagation c = c(x) depends only on one
spatial variable. This is a special case that is of interest when doing wavefield extrapolation
in the z direction; thus the velocity variations only occur in the direction transverse to the
direction of extrapolation.

By separating variables, one looks for solutions of the form u(x, z, t) = X(x)Z(z)T (t)
and obtains three linked ordinary differential equations (ODEs),

X ′′ + (
ω2

c(x)2
− ζ2)X = 0, Z ′′ + ζ2Z = 0, T ′′ + ω2T = 0, (27)

where ζ, ω are the separation constants. The first equation for X is again a Sturm-Liouville
ordinary differential equation. For any value of parameters ζ, ω, a solution X(x) = Xζ,ω(x)
can be found for the Sturm-Liouvile equation. The other two ODEs are solved using com-
plex exponentials, with Z(z) = eiζz, T (t) = eiωt. For fixed ζ, ω, a solution to the wave
equation is obtained, in the form of the linear combination

u(x, z, t) = aXζ,ω(x)eiζzeiωt + bXζ,ω(x)eiζze−iωt. (28)

A general solution to the wave equation is obtained by taking arbitrary sums of these solu-
tions, thus we expect to solve in the form

u(x, z, t) =

∫ ∫
a(ζ, ω)Xζ,ω(x)eiζzeiωt + b(ζ, ω)Xiζ,ω(x)eiζze−iωtdζdω, (29)

where the coefficient functions a(ζ, ω), b(ζ, ω) are arbitrary.

As in the 1D case, the initial conditions at t = 0 are enough to specify the functions
a, b, as the equations

u(x, z, 0) =

∫ ∫
[a(ζ, ω) + b(ζ, ω)]Xζ,ω(x)eiζzdζdω, (30)

∂u

∂t
(x, z, 0) =

∫ ∫
iω[a(ζ, ω)− b(ζ, ω)]Xζ,ω(x)eiζzdζdω, (31)

are invertible provided the transforms are properly defined.

That is, we are looking to find a definition of the 2D transform f(x, z) 7→ f̂(ζ, ω) so
that we can write, uniquely

f(x, z) =

∫ ∫
f̂(ζ, ω)Xζ,ω(x)eiζzdζdω. (32)

This will be the transform applied to both u0 and u1.
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THE 2D TRANSFORM

We look for a transform of the form

f̂(ζ, ω) =

∫
R

∫
R

f(x, z)

c(x)2
X ′

ζ,ω(x)e−iζzdxdz, (33)

where X ′
ζ,ω(x) is another parameterized family of solutions to the Sturm-Liouville problem.

That is, the transform of f is obtained by taking the inner product of f(x, z)/c(x)2 with the
function Xζ,ω(x)Zζ(z), so

f̂(ζ, ω) = 〈f/c2, X ′
ζ,ωZζ〉. (34)

The guiding rule is that we expect to find X, X ′ so that

〈Xζ,ωZζ/c
2, X ′

ζ′,ω′Z ′
ζ〉 = δ(ζ − ζ ′)δ(ω − ω′), (35)

where these are Dirac delta functions.

We can verify that the functions Xζ,ωZζ , X
′
ζ′,ω′Z ′

ζ are orthogonal when (ζ, ω) 6= (ζ ′, ω′).

Theorem 1 Suppose Xζ,ω(x), X ′
ζ,ω(x) are solutions to the Sturm-Liouville equation

d2X

dx2
+ (

ω2

c(x)2
− ζ2)X = 0.

Then the 2D functions (x, z) 7→ 1
c(x)

Xζ,ω(x)eiζz , (x, z) 7→ 1
c(x)

X ′
ζ′,ω′(x)eiζ′z are orthogonal

on R2 whenever (ζ, ω2) 6= (ζ ′, (ω′)2).

The proof proceeds by noting that the functions eiζz, eiζ′z are orthogonal in 1D when-
ever ζ 6= ζ ′ (this is the usual result of the Fourier transform on the real line). So when
these parameters are different, we integrate over the z variable first and get zero. In the
case where ζ = ζ ′, integrating over z first gives infinity. So instead, we integrate over the
x variable first, and consider the 1D inner product

〈1
c
Xζ,ω,

1

c
X ′

ζ,ω′〉 =

∫
1

c(x)2
Xζ,ω(x)X ′

ζ,ω′(x)dx. (36)
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To see this is zero, note

(ω)2〈1
c
Xζ,ω,

1

c
X ′

ζ,ω′〉 =

∫
ω2

c(x)2
Xζ,ω(x)X ′

ζ,ω′(x)dx (37)

=

∫
(

ω2

c(x)2
− ζ2)Xζ,ω(x)X ′

ζ,ω′(x)dx + ζ2〈Xζ,ω, X ′
ζ,ω′〉 (38)

=

∫ (
− d2

dx2
Xζ,ω(x)

)
X ′

ζ,ω′(x)dx + ζ2〈Xζ,ω, X ′
ζ,ω′〉 (39)

=

∫
Xζ,ω(x)

(
− d2

dx2
X ′

ζ,ω′(x)

)
dx + ζ2〈Xζ,ω, X ′

ζ,ω′〉 (40)

=

∫
Xζ,ω(x)(

(ω′)2

c(x)2
− ζ2)X ′

ζ,ω′(x)dx + ζ2〈Xζ,ω, X ′
ζ,ω′〉 (41)

=

∫
Xζ,ω(x)

(ω′)2

c(x)2
)X ′

ζ,ω′(x)dx (42)

= (ω′)2〈1
c
Xζ,ω,

1

c
X ′

ζ,ω′〉. (43)

That is,

((ω)2 − (ω′)2)〈1
c
Xζ,ω,

1

c
X ′

ζ,ω′〉 = 0. (44)

So if ω2 6= (ω′)2, the inner product must be zero.

This is almost enough to define the transform and its inverse. The idea is that when
ω = ω′, the two functions Xζ,ω, X ′

ζ,ω are nearly coherent, and their product, over R, will
integrate to infinity. (Certainly this is the case if we choose X = X ′ as in the symmetric
transform instance.) By introducing a proper scaling, we expect the functions to integrate
to Dirac delta functions. There is still work to be done here, which we will explore further
with examples.

CONCLUSIONS

We have given a framework for solving a 1D and 2D wave equation exactly, in the case
of a transversely inhomogeneous medium. The key step is to define a multidimensional
transform, analogous to the Fourier transform, that expands any function as a linear com-
bination of fundamental solutions to the Sturm-Liouville differential equation that appears
in separating variables in the wave equation. An example of the transform is given in the
1D case, for the example of a two-block velocity profile. Steps towards a 2D transform are
indicated, but not completely solved.
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