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ABSTRACT 
Seismic reflections are generally caused by contrasts in acoustic impedance.  

However, in media where there is significant absorption of seismic energy, reflections 
can also be caused by contrasts in the seismic absorption coefficient (or inverse-Q 
values). This note derives the reflection coefficient for a normally incident acoustic wave 
and then uses seismic modeling of SH-wave reflections for absorptive media using the 
finite-difference codes of Carcione (2007).  As predicted by theory and modeling, there 
are weak reflections due to contrasts in seismic absorption that show phase differences 
from reflections caused by impedance contrast. 

INTRODUCTION 
Exploration seismologists normally consider seismic reflections to be caused by 

contrasts in acoustical impedance (product of seismic velocity and density).  However, in 
media where there is significant absorption of seismic energy, we can have reflections 
that are caused by contrasts in the seismic absorption coefficient, α . Contrasts in 
absorption can also be considered as contrasts in the quality factor, which is inversely 
proportional to absorption. 

Figure 1 shows two reflection seismograms for SH mode propagation obtained using 
seismic modeling codes by Carcione (2007).  In Figure 1 (left), the reflections are caused 
only by a contrast in acoustical impedance in a two-layer model where the velocity 
increases from 2000 m/s to 3500 m/s.  In Figure 1 (right), there is no impedance contrast 
but there is a contrast in Q from Q=40 to Q=6.283. We see reflections that are not as 
strong for the second case, but reflections nonetheless. Hence, it would appear that 
reflections in the second seismogram are due solely to contrasts in the absorption, 

,α which is related to the quality factor, Q, by the relationship: 

 λ
πα

Q
= .  (1) 

Here 
f
v=λ  is the wavelength, v  is the seismic velocity and f is the temporal frequency 

of the wave.  
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FIG. 1. The seismogram on the left arises from a model with an impedance boundary at a depth 
of 400 m (2:3.5 impedance contrast), source at 250 m depth in the middle of the model and 
receivers at 260 m depth with 10 m spacing across the model. The seismogram on the right is 
from the same model with no impedance contrast across the boundary, but with a Q contrast of 
40:6.28. 

METHODOLOGY AND RESULTS 
In order to understand how these reflections arise, we shall extend the derivation for 

reflection coefficients elastic media as given by Robinson and Treitel (1980, p. 296) to 
allow for absorption. Following their notation, we consider a layer boundary at y=0 
where y, the depth dimension is increasing downward. The incident, reflected and 
transmitted sinusoidal wave displacements are given by: 

 )2exp( 1 yftAg ii κπ −=  (incident), (2) 

 )2exp( 1 yftAg rr κπ +=  (reflected) (3) 

and 

 )2exp( 2 yftAg tt κπ −=  (transmitted). (4) 

For an elastic medium, the wavenumbers 21 ,κκ  are real and given by: 

 
1

1
2
v

fπκ =  (5) 

and 
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fπκ =  (6) 

respectively, where 21 ,vv  represent the seismic velocities in layers 1 and 2. These 
wavenumbers are real for a medium that is purely elastic with no energy loss to 
absorption, which is the case where 0=α . 

However, we can readily consider absorption by introducing a wavenumber that is 
complex and given by: 

 ακ ik +=  (7) 

or 

 απ i
v
fk += 2 . (8) 

Toksoz and Johnston (1980), among others, explained this concept of a complex 
wavenumber whose imaginary component is absorption. 

In order to derive the reflection coefficients for this absorptive medium for a normally 
incident plane wave, we follow Robinson and Treitel’s method and require that the 
displacement and the normal stress be continuous at a boundary. The continuity of 
displacement at y=0 requires that: 

 .tri AAA =+  (9) 

(Here we divided out a common exponential factor, )2exp( iftπ .) 

The continuity of normal stress requires that 
y
gE

∂
∂  be continuous where E is the 

elastic constant relating stress to strain.  Therefore, 

 
y
gE

y
gE

y
gE tri

∂
∂

=
∂

∂
+

∂
∂

211 . (10) 

If we replace  κ by k  in the displacement expressions of (2), (3) and (4) and substitute 
these into equation (10), after dividing out a common factor of )2exp( iftπ  we obtain the 
following boundary condition at y=0: 

 tri AkEAkAkE 22111 )( −=+− . (11) 

Now if we combine equation (9) with equation (11), we obtain the expression for the 
reflection coefficient: 
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We can express Ek in terms of density, ρ  , and velocity, v  while recalling that 2vE ρ= . 
Therefore Ek can be expressed as: 

 ⎥⎦
⎤

⎢⎣
⎡ += απρ i

v
fvEk 22

  (13) 

If we express equation (13) in terms of Q, we get 

 ⎥
⎦

⎤
⎢
⎣

⎡
+=

Qv
fi

v
fvEk ππρ 22 , (14) 

which can be rewritten as: 

 ⎥
⎦

⎤
⎢
⎣

⎡
+=

Q
ivfEk

2
12 ρπ . (15) 

If we substitute equation (15) into equation (12), we obtain the following expression 
for the reflection coefficient in absorptive media, after dividing numerator and 
denominator by vfρπ2 : 
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We note that if there is no absorption in the medium such that 011

21

==
QQ

, equation 

(16) reduces to the difference of acoustical impedances divided by the sum as given by 
Robinson and Treitel (1980).  On the other hand, if there is no acoustical impedance 
between medium 1 and medium 2, we can still obtain reflections due to a contrast in 
absorption (inverse Q). In such a case, the reflection coefficient is given by: 
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Therefore, even with no impedance contrast, we can have reflections due to a contrast in 
the absorption properties of a two layers. 
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In Figure 1, we show the results of some finite-difference calculations for SH-waves 
for two cases: where the impedance contrast is 2:3.5, and where the Q contrast is 40:6.28.  
The reflection coefficient for the first case (where Q is constant) would simply be 
equation (16) with the Q and density contributions cancelling out leaving the difference 

in velocity divided the sum of the veolcities, 
21

21

vv
vv

+
− =-1.5/5.5 = -0.27. The reflection 

coefficient for the second case (with no impedance contrast) would be obtained by 
substituting into equation (17) to give: 
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or 

 i
i

iR 00150.0034.0
184.04

134.0 −=
+

= . (19) 

This a complex number whose amplitude is about 1/8 as big as the reflection coefficient 
for the impedance contrast, and there is a phase shift due to absorption. If we include both 
an impedance contrast and a Q contrast, we will see that the resulting seismic trace is not 
significantly different from that of the impedance contrast only. Figure 2 shows the 
normal incidence traces of the seismograms for impedance contrast only (leftmost trace), 
Q contrast only (middle trace) and for impedance contrast and Q contrast.  We note that 
the reflection amplitude for the left trace is nearly identical to the right trace.  Although 
the absorption contrast reflection is nonzero and phase shifted from the impedance 
reflection, it is barely noticeable. 
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FIG. 2. Zero-offset seismic traces for the layered model of Figure 1 for the cases of the 
impedance contrast only (impedance contrast = 2:3.5, left), absorption contrast only (Q contrast = 
40:6.28, middle), and impedance and absorption contrasts (same as left and middle traces, right).  

CONCLUSIONS 
From both theory and numerical modeling we note that the inclusion of absorption in 

our reflection computations, both in boundary value analysis and finite-difference 
calculations, produce reflection amplitudes that are slightly phase shifted but not 
noticeably different from those derived from elastic reflection coefficient calculations. 
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