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ABSTRACT

The nonstationary equivalent of the Fourier shift results in a general one-dimensional
integral transform that applies to many seismic data processing steps. This general trans-
form is, computationally, a simple matrix-vector multiplication, and it is a tool for imple-
mentation. Here, this general transform is used to implement a reversible normal moveout
(NMO) correction.

INTRODUCTION

The normal moveout (NMO) correction is one of the fundamental operations of seismic
data processing, (Dobrin and Savit, 1988). It can be formulated from wave theory in ways
to account for anisotropy and heterogeneity, or it can be approximated from geometric
arguments and middle school mathematics. We will gladly take the latter approach here,
and then implement the familiar second order NMO equation using the data processing
transform. Just as the Fourier transform was used to demonstrate the principles used in the
theory and implementation of the data processing transform, NMO will serve as a familiar
example and as a guide for implementing other processing steps by integral transform.

The conventional approach to implementing NMO requires interpolation between sam-
ples in time, and this is demonstrably a fast but irreversible tool, (Burnett, 2007). It is help-
ful here to review basic NMO theory before proceeding to the NMO integral transform.

THEORY

One of the preliminary goals of seismic data processing is to prepare the acquired data
for migration. Many migration algorithms, particularly post-stack, assume that the input
data are acquired at zero-offset. This is of course physically impractical, but data acquired
at various offsets can be processed into data that one would expect to record at zero-offset.
The two major steps that accomplish this are the NMO correction, and the dip-moveout
(DMO) correction, (Dobrin and Savit, 1988). NMO also serves a purpose in all processing
flows, even pre-stack migration processing flows, as the primary tool for estimating the
subsurface velocity model.

Assuming homogeneity and isotropy, the reasoning behind the NMO correction and the
derivation of the second order NMO equation can be seen with a simple picture of a seismic
experiment. As seen in Figure 1, energy travels away from the source in every direction.
The first arrival of the energy at nearby receivers travels straight toward them along the
Earth’s surface. The different receivers record this direct arrival energy at times that are
linearly proportional to their respective offsets from the source. When raw seismic data is
displayed as recording time versus offset, a linear pattern manifests due to the direct-arrival
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energy. The direct-arrival is then said to have linear moveout. Energy leaving the source
with some downward component may reflect off of interfaces in the subsurface. Now the
source to receiver travel path, and therefore the travel time is no longer linearly dependent
on offset. For the case of horizontal reflectors, a reasonably normal geologic case, travel
time for reflected energy increases hyperbolically with offset. Again displaying the seismic
data as travel time versus offset, energy reflected off of interfaces normal (perpendicular)
to the depth axis will manifest as hyperbolic patterns. Simple reflections are then said to
have hyperbolic, or normal, moveout.

It helps to view a reflection event at each receiver as having an arrival time that is the
sum of the equivalent zero-offset time for that receiver, and an offset and time-dependent
delay caused by normal moveout:

tx = t0 + ∆NMO. (1)

Since the goal is to move the acquired data to its zero-offset equivalent, each event is shifted
back in time by its appropriate ∆NMO. This can be found through geometric observations
of the seismic experiment. First, take the travel distance of the energy between the source
and each receiver as shown in figure 1. The Pythagorean Theorem gives the distance, d, in
terms of the reflector depth, z, and the offset, x:

d = 2

√
z2 +

x2

4
. (2)

Second, dividing this distance by the velocity, v, at which the energy travelled through
the medium gives the total travel time predicted by the simple model. Third, recognizing
2z/v the zero-offset travel time, t0, arrive at the second order NMO equation for a single
reflector:

tx =

√
t20 +

x2

v2
. (3)

This equation is only valid for a single layer model, because then there is only a single ve-
locity, v, specified. For multiple flat-layer models, when the velocity becomes a function of
depth, a better velocity to substitute into the NMO equation is the root-mean-square (RMS)
velocity. The RMS velocity is a time-weighted average velocity for a layered model, (Do-
brin and Savit, 1988). To predict travel times, a standard average or even a depth-weighted
velocity would be insufficient, because neither account for the actual travel time spent in
each individual layer. The RMS velocity for an N-layer model is given as:

vrms =

∑N
j=1 v2

j tj∑N
j=1 tj

. (4)

where vj and tj are the velocity and travel time, respectively, of the j-th layer. When
performing the NMO correction for a layered velocity model, it is important to realize that
vrms is a function of time, defined at zero offset. The NMO equation for multiple layers
then has the form,

tx =

√
t20 +

x2

v2
rms (t0)

. (5)
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FIG. 1. The seismic experiment. The second order NMO equation is derived from the raypath
geometry of this simple single horizontal layer model.

With the introduction of the RMS velocity, the second order NMO equation becomes a
useful approximation to the reflection travel times for many simple, but realistic geologic
models. For cleaner notation, the RMS velocity used in subsequent expressions is from
here on denoted as simply v. We have shown here the simple derivation for an expression
to correct data from a single shot, or a shot gather. However, the NMO equation holds
for, and is more often applied to, common midpoint (CMP) gathers. Azimuthal and far-
offset deviations from hyperbolic moveout behaviour can be caused by anisotropy, but are
not predicted by the second order NMO equation. Higher order expressions for the NMO
correction can be formulated that account for anisotropy, ((Tsvankin and Thomsen, 1994),
(Alkhalifah, 1997)) but we will keep to the admittedly basic case of second order NMO in
order to focus on the integral transform development. Nonetheless, even the higher order
NMO expressions agree with the form of equation 1, and they could also be implemented
by integral transform.

In order to implement the NMO correction by integral transform, we first recognize
that NMO is a nonstationary shift. As discussed earlier, the goal is to move the seismic
data from its recorded time, tx to its effective zero offset time, t0. Equation 6 gives the
nonstationary value of ∆ for NMO by integral transform.

∆NMO (t0) = tx (t0)− t0. (6)

All that is left is to substitute tx, t0, and ∆NMO into the general data processing transform
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equation, (Burnett, 2008)

h(q) =
1

2π

∫ ∞

−∞
F (β)eiβp(q)dβ, (7)

and then calculate αNMO for the inverse transform. The operator matrices can then be
constructed for each trace depending on the velocity model and the offset of the trace.

Replacing q with t0 and p with tx in,(Burnett, 2008)

h(q) ≡ f(q + ∆(q)) =
1

2π

∫ ∞

−∞
F (β)eiβ∆(q)eiβqdβ, (8)

shows the nonstationary shift being applied:

h (t0) ≡ f (tx) =
1

2π

∫ ∞

−∞
F (ω)eiω∆NMO(t0)eiωt0dω, (9)

where ω is now assigned as the Fourier dual of t0. In this form of the data processing
transform, the shifting and Fourier exponentials are separated. This form provides insight
into the shift itself during implementation. Still, combining equations 9 and 6 gives the
concise forward NMO transform:

h (t0) ≡ f (tx) =
1

2π

∫ ∞

−∞
F (ω)eiωtxdω. (10)

This transform maps the uncorrected frequency spectrum of a trace to its appropriate NMO-
corrected time series. A key observation at this point is that the output trace is distorted in
time with respect to the input, but integration is over frequency, so the forward transform
does not account for this distortion.

In the case of the NMO correction, the time distortion is referred to as NMO stretch
((Buchholtz, 1972), (Dunkin and Levin, 1973)). This problem manifests is most pro-
nounced at far offsets and early times, where the NMO correction is most severe. The
waveform of an event in this area is stretched to a longer period as the NMO correction
is applied, (Yilmaz, 2001). The amplitude of that event is not affected, but its time distor-
tion is caused by an alteration in its frequency content. Specifically, the lower frequency
content is boosted, and since the amplitude of the waveform is maintained, a nonphysical
addition of energy to the input signal has occurred. Yilmaz (2001) quantifies the frequency
distortion caused by NMO stretch in terms of ∆NMO and t0:

∆f

f
=

∆NMO

t0
, (11)

where, f is the dominant frequency of the input waveform. This expression is derived
from geometric arguments and assumes t0 >> f−1, (Yilmaz, 2001). Another approach to
describing NMO stretch comes from analyzing the effects of the NMO correction in terms
of instantaneous frequency, (Barnes, 1992). This approach provides excellent insight into
the frequency distortion, and yields an exact expression for NMO stretch:

βB =
tx

t0 − x2v′(t0)
v3(t0)

, (12)
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(Barnes, 1992) where v′ is the derivative of v with respect to time. This expression quan-
tifies NMO stretch without approximations, and is not dependent only on the dominant
frequency as in equation 11. It is valid for variable velocity models, and for a constant
velocity model, the derivative of velocity goes to zero, and βB − 1 agrees with the approx-
imation in equation 11, (Barnes, 1992).

In removing the NMO correction, the exact approach must also remove the effects of
NMO stretch. As equation 12 suggests, NMO stretch is itself nonstationary, and therefore
cannot be removed exactly using stationary filtering theory. However, since the data pro-
cessing transform takes advantage of nonstationary filtering, NMO stretch can be removed
exactly.

Substituting the NMO variables, ∆NMO and αNMO, into the general inverse data pro-
cessing transform, (Burnett, 2008)

F (β) =

∫ ∞

−∞
f(p)e−iβp(q)dp. (13)

gives the inverse NMO transform:

F (ω) =

∫ ∞

−∞
αNMOh (t0) e−iω∆NMO(t0)e−iωt0dt0, (14)

where the shifting and Fourier exponentials are still separated. Here, insight into the role
of α can finally be gained. αNMO is given as,

αNMO ≡ ∂tx
∂t0

=
t0 − x2v′(t0)

v3(t0)

tx
. (15)

The inverse NMO transform does account for NMO stretch, and in fact, αNMO = β−1
B

exactly! Realizing that the two are equivalent leads to a straightforward (once nonstation-
ary filtering is allowed) perspective on predicting and quantifying NMO stretch. Further,
Barnes (1992) proves, in terms of instantaneous power and energy spectra, that βB, and
therefore α indeed describes the nonphysical energy change caused by the forward trans-
form. Figure 2 demonstrates how αNMO removes NMO stretch during the inverse NMO
transform by appropriately applying nonstationary scaling to the amplitudes.

IMPLEMENTATION

The NMO transform acts as a map between the uncorrected spectrum and the NMO-
corrected trace. As such, the first step in implementing the forward NMO transform on a
trace is to apply a standard forward Fourier transform to that trace. This gives the uncor-
rected spectrum, which becomes the input column vector for a matrix vector multiplica-
tion. Following the general procedure for matrix operator construction outlined in Burnett
(2008), identify the output vector as the time-domain NMO-corrected trace and the trans-
form kernel as eiωtx . The input, or horizontal, axis then must be frequency (ω), and the
output axis must correspond to NMO-predicted time, tx. The time sampling interval (δt)
must be specified to construct the time axis. The length of the input trace must also be spec-
ified to find the frequency sampling interval (δω) and to then construct the frequency axis.

CREWES Research Report — Volume 20 (2008) 5



Burnett and Ferguson

100 150 200 250
Time Sample

Removing NMO Stretch with α
NMO

 
 

Input Trace
NMO Corrected
NMO Removed Properly
NMO Removed without α

NMO

FIG. 2. The effect of αNMO. A single trace (x=1350m, v(q) is linear, 2000-3000m/s) has the NMO
transform applied, and then removed two different ways. One way includes the amplitude correction
factor, αNMO, and the other does not. Both kinematically remove NMO, but αNMO is needed to
account for NMO stretch.

The frequency axis must match the frequency axis used for the Fourier transform, since the
matrix operator here will simultaneously remove that Fourier transform as it NMO-corrects
the data. The time axis for the forward NMO transform of an N-sample trace is defined as:

(t0)j = (j − 1)δt, (16)

for j=1:N. To match the MATLAB FFT frequency axis, we define the frequency sampling
interval and then the frequency axis respectively as:

∆ω =
2π

Nδt
, (17)

and
ωl = (l − 1)δω, (18)

for l=1:(1+N/2), and
ωl = (l −N − 1)δω, (19)

for l=(N/2+2):N.

Once the discrete axes are constructed, each element of the forward NMO transform
operator matrix, A, can be computed as:

ajl ≡ eiωl(t0)j

2π
◦ eiωl(∆NMO)j =

eiωl(tx)j

2π
, (20)

where,

(tx)j =

√
(t0)

2
j +

x2

v2
j

. (21)
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FIG. 3. The real part of a single NMO transform operator matrix. Multiplication of this matrix with
a frequency spectrum gives the NMO-corrected time series associated with that spectrum. This
matrix changes for each trace unless the offset and the velocity model are held constant.

The NMO transform is then expressed as a matrix vector multiplication:

h
(
(t0)j

)
=

N∑

l=1

ajlF (ωl) . (22)

An example of a full matrix operator for the forward NMO transform is shown in Figure 3.
The matrix in Figure 3 is the Hadamard (entry-wise) product of an ordinary inverse Fourier
transform matrix and the forward shifting matrix. Figure 5 shows the two matrices side by
side. Although not immediately clear in figure 3, figure 5 shows that both parts of the
operator have symmetry over the frequency axis, and expense can immediately be saved
by only computing the positive-frequency half of the matrix and copying values to the
negative half. Any increase in computational efficiency is valuable, as for a trace of length
N, N2 operations are required to perform the full matrix vector multiplication.

The inverse NMO transform uses the NMO-corrected time series as its input vector, and
the uncorrected spectrum as its output vector. The same axes will be used as in the forward
transform, except they will switch input and output roles, making time defined over the l-
index, and frequency over the j-index. Each element of the inverse NMO transform kernel,
B, is then computed as

bjl ≡ (αNMO)le
−iωj(t0)l ◦ e−iωj(∆NMO)l = αle

−iωj(tx)l , (23)
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FIG. 4. The real part of a single NMO−1 transform operator matrix. This is the inverse of the matrix
shown in figure 3. Multiplication of this matrix with a trace recovers the uncorrected spectrum of
that trace.

8 CREWES Research Report — Volume 20 (2008)



Reversible NMO

Input Frequency (Hz)

O
ut

pu
t T

im
e 

(s
)

NMO Shifting Matrix

62.5 125 −62.5

0

0.2

0.4

0.6

0.8

1

Input Frequency (Hz)

Inverse Fourier Transform Matrix

62.5 125 −62.5

FIG. 5. An example NMO transform matrix separated into its inverse Fourier transform and forward
shifting matrices. Only the real part is shown. The symmetry about the frequency axis is clear.
The Hadamard (entry-wise) product of these two matrices gives the mixed-domain NMO operator
matrix. An example of the full operator matrix is shown in figure 3.

no summation over l. Implementing αNMO requires a derivative of velocity to be computed.
This is one area that can introduce error into the discrete inverse transform. Since the matrix
vector multiplication is already quite expensive, it is probably worthwhile in most cases to
employ an accurate derivative algorithm. However, in many real situations, the velocity
function can be a stepping function, where the derivative is undefined at the jumps in the
function. In these cases, it is often better to assume an interval-wise constant velocity (for
αNMO only) and be aware that error may be introduced here for inverse NMO. Assuming
a velocity function with a defined derivative, αNMO is discretely expressed as:

(αNMO)l =
(t0)l −

x2v′((t0)l)
v3((t0)l)

(tx)l

. (24)

The inverse NMO transform can now be expressed as a matrix vector multiplication:

F (ωj) =
N∑

l=1

bjlh ((t0)l) . (25)

The matrix operator can be displayed and examined for symmetry. Figure 4 shows the full
inverse NMO operator for the same trace as Figure 3. This can again be expressed as the
Hadamard product of a regular Fourier transform matrix and the reverse shifting matrix,
scaled along the time axis by αNMO. The separated version is shown in Figure 6, where
symmetry is again clear over the frequency axis.

DISCUSSION

NMO can be applied by matrix vector multiplication in the time-domain as well, (Claer-
bout, 1992). Just as the NMO transform accomplishes in the mixed-domain, the time do-
main NMO matrix is a variably shifted Dirac delta function. However, in the time-domain
alone, reversing the NMO correction is difficult for variable velocity models. The input
axis of the forward transform in the time domain corresponds to tx and the output axis is
t0, while the roles are reversed for the inverse transform. The problem with this approach
in the time domain is that the delta function must be discretely approximated. Instead of
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FIG. 6. An example NMO−1 transform matrix separated into its Fourier transform and reverse
shifting matrices. Only the real part is shown. The Hadamard product of these two matrices gives
the mixed-domain NMO−1 operator. Again, the symmetry is clear over the frequency axis.
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FIG. 7. The matrix product of the NMO−1 and NMO matrices for a single trace. Their product
should give the identity matrix (zero, except for ones along the diagonal) if the inverse is perfect.
Only a small amount of energy is off of the diagonal.

an impulse, an interpolator function is substituted, (Claerbout, 1992). Even a bandwidth-
friendly interpolator choice such as the sinc function is difficult to accurately implement
on the grid of the time domain.

By applying NMO through the mixed-domain, the matrix vector implementation of
the transform gives a band-limited approximation to convolution with a continuous Delta
function that is not confined to only the rigid time sampling grid. Instead of extracting an
interpolated value based on some assumed behaviour between samples, the exact value of
the continuous band-limited version of the recorded function is extracted. Since this entire
continuous function is defined exactly by the frequency spectrum of the actual recorded
data, both the original sample values and the target values are preserved throughout the
transform process. For these reasons, the mixed domain NMO transform is almost exactly
reversible, even in practise. An estimate of how well the inverse NMO transform is ap-
proximated is shown in figure 7. The inverse NMO transform matrix times the forward
NMO transform matrix approximates the identity matrix, I, quite well.

Another practical test for evaluating how well the NMO transform and its inverse per-
form is shown in figures 8, 9, and 10. In all three, the input data is shown in the left panel.
The central panel shows the NMO correction applied in figure 8 and removed in figure
9 using a conventional 5-point sinc-interpolation algorithm. The velocity model for the
NMO correction linearly increases from 2000 and 3000 m/s from the top to the bottom of
the section. The right panels in figures 8 and 9 show the same process repeated using the
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FIG. 8. NMO method comparison. The NMO correction for a linearly increasing velocity model is
applied to the input data (a.) using a conventional 5-point sinc-interpolation algorithm (b.) and the
NMO transform (c.).

NMO and NMO−1 transform. The results for the forward and inverse NMO are visu-
ally indistinguishable between methods, suggesting that the transform method would not
influence interpretation of the final image. However, figure 10 shows the difference section
for both NMO, NMO−1 processing sequences, and there is a noticeable difference. The
difference panels are scaled by 100 times the input data to show that a percentage of the
data is lost under the sinc-interpolation sequence. The transform sequence is much cleaner,
with some ringing in the difference section caused by the variable velocity model. Near the
top of the section, where NMO stretch is severe, neither algorithm recovers the data well.
In most real cases, this shallow data is not of interest to reflection processing as it contains
mostly direct arrivals, very shallow reflections, and refractions.
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FIG. 9. NMO−1 method comparison. The NMO correction is removed from the results shown in
figure 8 using a 5-point sinc-interpolation algorithm (b.) and the NMO−1 transform (c.). The results
should ideally recover the input data (a.) exactly. Both methods visually appear to give the same
result, although this is not really the case (see figure 10).
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FIG. 10. NMO methods difference comparison. Difference sections after the NMO correction is
applied and removed from the input data (a.), using (b.) a 5-point sinc-interpolation algorithm and
(c.) the NMO/NMO−1 transform. Panels (b.) and (c.) are normalized to the maximum of the
input data and scaled by 100, showing that the conventional sinc-interpolation sequence destroys
a percentage of the useful data.
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