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ABSTRACT

Phase shift operators are presented that enable plane wave propagation through media
that are transversely anisotropic. These operators propagate plane waves in all three spatial
dimensions for all three components, and they are developed to reside at the centre of seis-
mic imaging and modelling by the Rayleigh-Sommerfeld approach. Numerical examples
are provided for P-waves, SH-waves, and SV-waves in vertical transverse-isotropy, dipping
transverse-isotropy, and horizontal isotropy (vertical fractures) are provided.

INTRODUCTION

Advances in seismic acquisition technology and high-performance computing (HPC)
facilitate higher fidelity imaging and modelling, however, modelling and imaging are still
either too approximate for use in complex media, (Hill, 1990, for example), or they are
much too expensive to use with large data sets and / or large model spaces, (Mulder and
Plessix, 2004, for example). In order to capture the highest fidelity structural and textural
information from large data volumes, CREWES has begun development of a large scale
seismic modelling and imaging capability that is accurate in complex media, flexible with
regard to the nature of the propagating wavefield, and controllable with regard to computa-
tional cost.

Our imaging and modelling effort proceeds naturally through Rayleigh-Sommerfeld
integral, (Ersoy, 2007, p. 59) formulation of wave propagation. This integral is familiar
in that conventional imaging by phase shift. (Gazdag, 1978) is a special case of this more
general theory, and it is unique in that wave propagation is controlled numerically by a
set of phase shift operators, reflection operators, and transmission operators, (Cooper and
Margrave, 2008). From a development standpoint, the Rayleigh-Sommerfeld framework
offers great efficiency because seismic modelling and imaging are basically the reverse of
each other and differ mainly where (and when) data are evaluated during computation.

Central to this scheme are extrapolation operators that accommodate heterogeneity and
anisotropy for 3D multi component data. To achieve high accuracy and efficiency, the
transform domain of temporal frequency and local slowness has a number of significant
advantages. Here, local slowness implies localization of the global slowness transform by
the process of windowing. As is well known, seismic reflectivity and anisotropy are derived
from plane waves in slowness coordinates, so it is natural to remain there for analysis and
numerical implementation. Further, heterogeneity, like the salt lenses of the Scotian Shelf,
(Marland et al., 2006), result in caustics that are often impossible to resolve in space-
time, (Hill, 1990). Where rocks are anisotropic, for example in the Canadian foothills
and in the shales of the Western Canadian Sedimentary Basin (WCSB), problems with
caustics can increase dramatically - especially for S waves, (Schoenberg and Helbig, 1997).
Fortunately, caustics simplify in slowness coordinates, (de Hoop et al., 2000, where the
slowness-frequency domain is equivalent to the τ → ω transform of their slowness and
time domain.), and it is well known from global seismology that slowness is a powerful
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analysis domain where caustics are encountered, (Shearer, 1999, pp. 42 - 44 for example).

Computationally, modelling and imaging conducted in local slowness coordinates hold
the promise of high accuracy, high efficiency, plus control of the propagating mode. Seis-
mic wavefields are extrapolated recursively through a geologic model, and reflection and
transmission are modelled at each grid level in the model (forward modelling), or an imag-
ing condition is invoked and seismic reflectivity is estimated (imaging). Unlike ray-based
approaches, extrapolation ray paths are not restricted to minimum traveltimes, (Schneider,
1978) or maximum energy rays, (Nichols, 1996) for example, or any other subset of the
multi-mode wavefield. This ability is similar to that of finite-difference approaches, (Bord-
ing and Lines, 1997), but computation is much more efficient, and control of the propagat-
ing mode is always retained - events can be turned on and off if desired without changing
the model. Access to this domain is achieved simply through the Fast Fourier transform,
(Foster and Mosher, 1992; Karl, 1989, pp. 331) so that distribution of data to the nodes
of a cluster computer is "embarrassingly parallel", (Foster, 1995, Section 1.4.4 for exam-
ple). That is, for a single frequency ω, the basic unit of data (a matrix) fits easily onto one
computational node, and extrapolation, reflection, and transmission experiments proceed
on each node independently. At the end of computation (or even during computation if
desired), the monochromatic results are gathered and analyzed together.

In the following, we present a set of operators that will form the computational inner
loop of seismic imaging and modelling within the Rayleigh-Sommerfeld scheme. These
operators adapt automatically to dipping interfaces and tilted symmetry angles for trans-
verse isotropy, and they do so for homogeneous 3D media. Rather than raytracing to find
the required incident angles, cross products of two unit vectors are used to determine the
effective incident ray parameter where one vector is parallel to the axis of TI symmetry,
and the second is normal to the incident plane wave. An effective ray parameter results
that is used to compute anisotropic vertical slowness. This slowness, in turn, is used to
extrapolate the incident wavefield. Solutions for P-waves, SV-waves, and SH-waves are
presented, and a number of 3D impulse responses for dipping, fractured media are given
as a demonstration. A discussion of branch points associated with wave propagation in
anisotropic media is presented, and a branch-point solution for SH-waves is provided.

THEORY

For constant frequency ω, ray parameters p = p1 î + p2 ĵ + p3 k̂ define a plane wave in
x = x1 î + x2 ĵ + x3 k̂. Unit vectors î, ĵ, and k̂ define the orthogonal coordinate system of
the model space. From the scalar wave-equation, p1, p2 and p3 are coupled according to

p3 =
1

v

√
1− (v p1)

2 − (v p2)
2, (1)

where v is acoustic velocity. Given vectors u and v in the plane of the plane wave, the
normal p̂ to the plane wave is computed as

p̂ =
u× v

|u× v| , (2)
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where p̂ points in the direction of propagation of the incident plane wave. Given u =
∆x1 î + 0 ĵ−∆x3 k̂, and v = ∆x1 î + ∆x2 ĵ + 0 k̂, for example, u× v is

u× v = ∆x3 ∆x2 î + ∆x3 ∆x1 ĵ + ∆x1 ∆x2 k̂. (3)

For plane waves, write travel time in terms of p3

∆xj =
∆t

pj

=
∆x3 p3

pj

, (4)

and û× v̂ becomes

u× v = ∆x2
3 p3

[
1

p2

î +
1

p1

ĵ +
p3

p1 p2

k̂

]
=

∆x2
3 p3

p1 p2

[
p1̂i + p2̂j + p3k̂

]
(5)

Unit normal p̂ to the incident plane wave is now computed as

p̂ =
u× v

|u× v| =
p1 î + p2 ĵ + p3 k̂√

p2
1 + p2

2 + p2
3

. (6)

For numerical wave-propagation in the Fourier domain (k1, k2, ω), where k1 and k2 are the
Fourier duals of x1, x2, and ω is temporal frequency, the normal p̂ to any component of
the wave spectrum is available using equation 6. To see this, recall the simple relationships
between slowness and wavenumber: p1 = k1

ω
and p2 = k2

ω
plus, equation 1 - for any plane

wave ϕ (k1, k2, ω), then p̂ is defined through equation 6.

The importance of p̂ for a plane wave can be seen in its application to angle-dependent
effects like anisotropy with a defined axis of symmetry. For example, for a TTI medium,
dip θ and azimuth φ define the orientation of the azimuthal symmetry axis, and unit normal
â associated with the TTI symmetry plane is computed as

â = sin θ cos φ î + sin θ sin φ ĵ + cos θ k̂, (7)

and the effective ray parameter pI between them is

pI =
sin θI

v
= |p̂× â|

√
p2

1 + p2
2 + p2

3, (8)

where θI , v and p3 are evaluated in the incident medium. The form of the left-hand side of
equation 8 is convenient for incident media that are also anisotropic. Figure 1 demonstrates
the relationship between p̂ and â. Here, unit vector â is parallel to the axis of symmetry of
a TI medium, and p̂ is normal to an upwards traveling plane wave. The angle θI between â
and p̂ corresponds to the effective ray parameter pI according to equation 8. In the notation
of, (Thomsen, 1986), and following, (Kennett, 1983, pp. 236 - 237), (Udias, 1999, p. 268),
P- and SV-wave in TI media are given by

qα =
1

2

√
2

β2
+

2

α2
− 4 S p2

I − 4 R, (9)

and

qβSV
=

1

2

√
2

β2
+

2

α2
− 4 S p2

I + 4 R (10)
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respectively, where

S =

(
1

2

α2
0

β2
0

+
1

2

)
ε + 1− δ∗

2

(
α0

β0

)2

, (11)

and

R =
1

2

[
4 p4

I

[
S2 − 2 ε− 1

]
+ 4

(
pI

β0

)2

[2 ε− S + 1]

+4

(
pI

α0

)2

[1− S] + β−4
0 + α−4

0 − 2 (α0 β0)
−2

] 1
2

. (12)

SH-wave velocity is given by

qβSH
=

1

β2
0

− p2
I [2 γ + 1] . (13)

Equations 9, 10, and 13 give vertical slownesses for P- and S-waves respectively in coor-
dinates defined by a vertical axis of TI symmetry. For extrapolation, however, we require
qα and qβ defined for media where the vertical axis of the numerical grid and the axis of TI
symmetry are not aligned. For P-waves, and in terms of qα;i and αi in the incident medium
and qα;r and αr in the refracted medium, Snell’s Law may be written

1− (αi qα;i)
2

α2
i

=
1− (αr qα;r)

2

α2
r

. (14)

Equation 14 may then be solved for qα;r according to

q2
α;r =

1

α2
r

− 1

α2
i

+ q2
i . (15)

Then, using
1

α2
i

= p2
1 + p2

2 + q2
α;i, (16)

and
1

α2
r

= p2
I + q2

α, (17)

where qα is given by equation 9, the solution for qα;r is:

q2
α;r = q2

α + p2
I − p2

1 − p2
2. (18)

Similarly for the S-waves we have:

q2
βSV ;r = q2

βSV
+ p2

I − p2
1 − p2

2. (19)

and
q2
βSH ;r = q2

βSH
+ p2

I − p2
1 − p2

2. (20)

Note, when the axis of TI symmetry is parallel with the vertical axis of the numerical grid,
p2

i = p2
1 + p2

2.
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For an incident plane wave, equations 18, 19, and 20 determine vertical slowness for
the plane wave that refracts into the lower medium, where the following Fourier integral
governs extrapolation, (Gazdag, 1978)

ϕ∆z = ϕ0 ei ∆z q ω. (21)

Spectra ϕ∆z and ϕ0 are computed according to

ϕ ↔ ϕ (kx, ky, ω) =
1

(2 π)2

∫ ∞

−∞
P (x, y, t) ei[kx x+ky y−ω t] dx dy dt, (22)

and subscripts 0 and ∆z correspond to input and output spectra respectively. Vertical slow-
ness q can be any of equations 18, 19, and 20. For example,

ϕ∆z = ϕ0 ei ∆z qβSV ;r ω (23)

extrapolates input wavefield ϕ0 through ∆z at SV-wave velocity using equation 19.

Branch points

From experience with isotropic media, it is important to track the location of branch
points in anisotropic media. Branch points, basically, define the evanescent boundary where
vertical slowness p3 becomes complex. In 2D media that are isotropic, for example, the
evanescent boundary occurs where p1 α < 1. With this certain knowledge, the evanescent
region is defined, and steps may be taken to mitigate any numerical instability associated
with this zone. In anisotropic media, the evanescent boundary is more difficult to identify -
especially in dipping anisotropy. Of the three body wave-modes, the simplest to consider is
SH. According to equation 13, the branch point for SH-waves is found by setting qβSH

= 0,
and then solving for pI = pbp where pbp is pI at the branch point.. Then, through equation
8 and knowing â in advance, the evanescent boundary for the incoming plane waves can be
found.

When qβSH
= 0, then, the solution for equation 13 gives branch point pbp as

p2
bp =

1

β2
0 [2 γ + 1]

. (24)

From equation 6, for a known TI orientation â, pbp is given as

p2
bp = |p̂× â|2 [

p2
1 + p2

2 + p2
3

]
, (25)

where p = p1̂i+p2̂j+p3k̂ is here normal to the incident plane wave associated with branch
point pbp. Set equation 24 and 25 equal to each other and collect terms to get

1 = β2
0 |p̂× â|2 [2 γ + 1]

[
p2

1 + p2
2 + p2

3

]
(26)

The cross product in equation 27 is given explicitly as

|p̂× â|2 =

∣∣∣∣
p1 p2 p3

a1 a2 a3

∣∣∣∣
2 [

p2
1 + p2

2 + p2
3

]−1
, (27)
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and insertion into equation 26 gives a solution that is general for â,

1 = β2
0

∣∣∣∣
p1 p2 p3

a1 a2 a3

∣∣∣∣
2

[2 γ + 1] . (28)

For the specific case of â = k̂ (the TI axis is parallel to the vertical axis), the precise
incident plane wave associated with pbp is

1 = β2
0

[
p2

1 + p2
2

]
[2 γ + 1] . (29)

As numerical extrapolation proceeds for SH-waves, equation 29 determines p2 for a given
p1.

EXAMPLE

To verify the performance of the operators described above, velocity surfaces for P-
waves, SV-waves, and SH-waves in VTI, HTI, and TTI media are generated. Beginning
with P-waves, Figures 2a and b show P-wave velocity as a function of inline (p1) and cross
line (p2) ray parameters. For VTI (Figure 2a), velocity is symmetric for all azimuths with
slow velocity associated with small p1 and p2 (small incident angles), and large velocity as-
sociated with large p1 and p2 (large incident angles). Figure 2b represents P-wave velocity
in an HTI medium. Here, fractures are oriented along p1 = 0 (90 degrees azimuth). Veloc-
ity for steep angles along the fracture direction is high. Velocity is low across fractures at
large angles, and it is high for small angles. In a dipping TI medium, the P-wave velocity
surface is a combination of VTI and HTI as can be seen in Figure 3a and b. In Figure 3a,
the axis of TI symmetry dips at 45 degrees an points along p2 − 0 (zero degrees azimuth).
For steep dips in the negative direction, velocity rises steeply from the evanescent boundary
to a high velocity, and then it decreases to low frequency and 45 degree dips on the positive
side. It rises briefly as the angle increases beyond 45 degrees until it meets the evanescent
boundary. Figures 3b demonstrate P-wave velocity for the same axis but with a 45 degree
azimuth relative to p2 = 0.

In Figures 4a, b, c, and d we see an example of P-wave propagation in 3D. A P-wave
source is initiated, and propagation through a homogeneous VTI model is simulated (Figure
4a) where a snapshot is taken at a fixed time. The wavefield propagates farther along the
in-line direction than along the vertical in this VTI medium (Figure 4a), and it is similarly
fast along the cross-line direction (Figure 4b). A horizontal slice through this wavefield
shows that wave propagation is symmetric about the TI axis of symmetry (Figure 4c, and
the analytic wavefield (red line Figure 4d) overlies precisely the extrapolated wavefield.

Figure 5a, b, c, and d demonstrates P-wave propagation in a TTI medium. Here the
axis of symmetry points along the inline direction towards 0 meters. Figure 4a shows that a
slice through this wavefield along the cross-line direction is symmetric, with farthest prop-
agation along the cross-line direction, and shorter propagation distance along depth. Fig-
ure 4b shows a slice along the in-line direction, wave propagation is asymmetric. Fourier
wraparound and the branch point coincide close to in-line coordinate 1800 m and cross-line
coordinate 1200 m. A horizontal slice through this wavefield is also asymmetric (Figure
4c), and the analytic curve overlies the wavefield between 1800 m and 4000 m until the
branch point is encountered (Figure 4d).
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In Figure 4a, b, c, and d, P-wave extrapolation in an HTI medium is explored. Fractures
are vertical in this medium with fracture direction aligned with the cross-line axis. In Fig-
ure 4a, a cross section is symmetric and propagation distance is the same for all angles of
incidence. Across the fracture direction (Figure 4b), propagation distance is farthest along
depth and shortest along the in-line direction. A constant depth slice (Figure 4c) shows a
slow direction across fractures and a fast direction along fractures, and the analytic curve
(red line Figure 4d) overlies the wavefield to about 80 degrees angle of incidence. The
wavefield diverges from the analytic curve, probably, because the velocity of the overbur-
den was (effectively) higher than the slow-direction velocity of the HTI medium.

Figures 7a, b, c, and d show SV-wave velocity surfaces for VTI (Figure 7a), HTI (Figure
7b), TTI (45 degrees, Figure 7c), and TTI with a 45 degree dip and 45 degree azimuth
(Figure 7d). Unlike P-wave velocity, SV-velocity for a VTI medium is low at the evanescent
boundary, it increases to a maximum value at about 45 degrees, and it decreases to a low
value at 0 degrees (Figure 7). For HTI, SV-velocity has nearly the reverse variation of
P-wave velocity except that it begins at a low value at the evanescent boundary along the
cross-line direction. When the medium is tilted, SV-wave velocity begins at the evanescent
boundary at a fairly low value for steep negative dips and decreases quickly to a low value
at -45 degrees (Figure 7b). From there it rises rapidly to a large value at 0 degrees, and it
decreases from there rapidly to the evanescent boundary (Figure 7c). As the azimuth of the
TTI axis is rotated, the velocity surface rotates accordingly (Figure 7d)a.

SV-wave fields in a VTI medium are given in Figures 9a, b, c, and d. In-line and
cross-line slices demonstrate the associated fast and slow directions (Figures 9a and b), and
the horizontal slice is symmetric (Figure 9c). The cross-line slice in Figure (Figure 9d) is
given to show the caustics (-1000 m in-line and 1800 m cross-line, and -1000 m in-line and
3800 m cross-line) associated with propagation in TI media.

Significant SV-wave caustics are evident on Figures 10a, b, c, and d - particularly in
Figure 10d. Here, the axis of TI symmetry is along the in-line direction. The wavefield is
symmetric across the symmetry axis (Figure 10a), and it is strongly asymmetric across the
axis direction (Figure 10b).

SV-waves in a HTI medium are demonstrated in Figures 11a, b, c, and d. Along frac-
tures, the wavefield is symmetric and no caustics are apparent (Figure 11a). Across frac-
tures, the higher velocity in the incident medium has cut off the wavefield at high dips
(Figure 11b).

A horizontal slice through the SV-wavefield shows a pronounced fast and slow direction
(along and across fractures respectively), and significant caustics are present (the crossed
features pointing towards the corners of this volume (Figure 11c).

The velocity surfaces associated with SV-waves associated with VTI, HTI, and TTI
media at different azimuths are similar to those of P-waves except slower (Figures 12a and
b and 13), similarly the SH-wavefield performance (Figures 14 through Figures 16).
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FIG. 1. For a plane wave in a TTI medium, the effective angle of incidence φI is the angle between
normal p̂ to the plane wave and normal â to the plane of azimuthal symmetry.

CONCLUSIONS

Designed to reside at the centre of a Rayleigh-Sommerfeld, (Ersoy, 2007, p. 59) type
algorithm for seismic imaging and modelling, a number of phase shift operators for trans-
verse isotropy are detailed and implemented. Numerical examples are presented to demon-
strate wavefront extrapolation for P-waves, SV-waves, and SH-waves. Numerical artifacts
are shown to be minimal for vertical transverse isotropy and horizontal transverse isotropy.
In tilted transverse isotropy, numerical artifacts associated with branch points are identified.
Solutions for branch points are developed for SH-waves and similar solutions are antici-
pated for P-waves and SV-waves. It is expected that, once an automatic process for branch
point identification is determined, stabilization filter development will follow.
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APPENDIX A: SNAPSHOTS

In programming environments where the first value (sample) of a 1-D array corresponds
to index 1, and the last sample corresponds to index N, the discrete Fourier transform is
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FIG. 2. P-velocity surface (<{α}) for A VTI medium (a), and a HTI medium (b).

FIG. 3. P-velocity surface (<{α}) (a) in a TTI medium (φ = 45 and θ = 0 degrees) and (b) for the
same medium with a different azimuth (θ = 45 degrees).

FIG. 4. 3D_z_0
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FIG. 5. 3D_z_45

FIG. 6. 3D_z_90
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FIG. 7. SV-velocity surface (<{β}) for A VTI medium (a), and a HTI medium (b).

FIG. 8. SV-velocity surface (< (β)) in a TTI medium (a, φ = 45 and θ = 0 degrees) and (b) for the
same medium with a different azimuth (θ = 45 degrees).

FIG. 9. 3D_z_sv_0
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FIG. 10. 3D_z_sv_45

FIG. 11. 3D_z_sv_90
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FIG. 12. SH-velocity surface (<{β}) for A VTI medium (a), and a HTI medium (b).

FIG. 13. SH-velocity surface (< (β)) in a TTI medium (a, φ = 45 and θ = 0 degrees) and (b) for the
same medium with a different azimuth (θ = 45 degrees).

FIG. 14. 3D_z_sh_0
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FIG. 15. 3D_z_sh_45

FIG. 16. 3D_z_sh_90
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often given by ∗:

fn =
1

N

N∑

k=1

Fk e2 π i
[k−1] [n−1]

N , (30)

where fn is the nth sample of signal f , Fk is the kth frequency sample of Fourier spectrum
F , and N is the number of samples in f . To help us to verify the performance of the TI
operator, we wish to examine a time snapshot of the propagating wavefield in x and x3, and
compare it to a corresponding wavefield that is computed independently. In 3D, however,
equation 30 implies that we must compute a 4D dataset (x, t). Because we propagate
wavefields in ω, we may avoid computation of an entire t axis, and compute only the 3D
output (x, τ), where scalar τ is time elapsed after source initiation.

So that we may take a snapshot at time τ of a propagating wave, then, we wish to
modify equation 30 so that

n =
τ

∆t
(31)

where ∆t is the time interval between samples. Further, we wish to use the symmetry
properties of real, causal signals and propagate only positive frequencies to ensure compu-
tational efficiency. Equation 30, then, can be written as the sum of the inverse transform of
the positive side of the spectrum and the inverse transform of the negative side according
to:

fn =
1

N

N
2∑

k=1

Fk e2 π i
[k−1] [ τ

∆t
−1]

N +
1

N

N∑

j=N
2

+1

Fj e2 π i
[j−1] [ τ

∆t
−1]

N . (32)

We note that, for equation 32 above, Fourier components Fj that correspond to negative
frequencies are related to components associated with positive frequencies according to:

Fj = F ∗
N+2−j, (33)

where N
2

+ 1 ≤ j ≤ N , and where ∗ indicates complex conjugate. We then write equation
32 as

f τ
∆t
≈ 1

N

N
2∑

k=1

Fk e2 π i
[k−1] [ τ

∆t
−1]

N +
1

N

N∑

j=N
2

+2

F ∗
N+2−j e2 π i

[j−1] [ τ
∆t
−1]

N , (34)

with the ≈ operator to indicate that frequency component FN
2

+1 corresponding to negative
Nyquist is never computed. Replacement of indicies simplifies equation 34 so that:

f τ
∆t
≈ 1

N

N
2∑

k=1

Fk e2 π i
[k−1] [ τ

∆t
−1]

N +
1

N

N
2∑

j=2

F ∗
j e2 π i

[N+1−j] [ τ
∆t
−1]

N . (35)

∗FORTRAN is an example of an environment where arrays are indexed beginning with 1. For example,
the do loop in the following code snippet
do j=1,N,1
f(j)=foo(f(j))

end do
begins at j=1 and ends at j=N. In contrast, the same do loop in C begins with j=0 and ends with j=N-1.
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Then, for bandlimited data (0 < ω < ωNyq), equation 35 becomes an equality again ac-
cording to:

f τ
∆t

=
1

N

b∑

k=a

[
Fk e2 π i

[k−1] [ τ
∆t
−1]

N + F ∗
k e2 π i

[N+1−k] [ τ
∆t
−1]

N

]
. (36)

where 2 < a < b and a < b ≤ N
2

. Numerical implementation of equation 36 is straightfor-
ward and allows efficient computation of snapshots.
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