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ABSTRACT

We develop the mathematical properties of Gabor multipliers, which are a nonstation-
ary version of Fourier multipliers. Some difficulties with current practice are identified, a
functional calculus for combining the operators is given, and some indications for including
corrections terms are noted. These techniques are motivated by the need for nonstationary
data processing methods to model seismic wave propagation in nonhomogeneous media.

INTRODUCTION

The Gabor transform and Gabor multipliers have been developed as nonstationary fil-
tering techniques useful in a variety of seismic data processing applications such as spectral
deconvolution, depth migration, and reverse time migration. Some recent work on this in-
clude (Ismail, 2008), (Ma and Margrave, 2007a), (Ma and Margrave, 2007b), (Henley and
Margrave, 2007), (Montana and Margrave, 2006), (Margrave and Lamoureux, 2006), and
(Grossman, 2005). Some foundational references include (Margrave et al., 2003b), (Mar-
grave et al., 2003a) and (Margrave and Lamoureux, 2002). Gabor techniques are an exten-
sion of the Fourier transform methods applied to localized signals, allowing mathematical
models with inhomogeneities in the physical material being studied.

The essential idea in the Gabor method is to break up a signal into small, localized
packets by multiplying the signal with a window function. Typically, the window is a
smooth “bump” function, such as a Gaussian, localized at the point of interest in the signal.
The localized packet can then be analyzed or modified using Fourier techniques. This is
done for a collection of windows, covering the entire extent of the signal. Finally, all the
processed packets are re-assembled into one full, processed signal which is the result of the
nonstationary filtering.

The goal of this paper is to establish basic mathematical properties of the Gabor mul-
tipliers as non-stationary filters, with the aim of improving current practice in using these
filters. The motivation is that we see in practice some unusual, and undesired, behaviour
for these filters. For instance, in Gabor deconvolution, there sometimes appears to be an
unexpected phase rotation in the processed signal which is not physically realistic. It seems
to be an artifact of the numerical technique. Similarly, extrapolation operators can become
numerically unbounded unless a careful choice of windows is made.

It is possible to see errors at even the most basic level of the Gabor multiplier, in simple
examples where the multiplier is used to approximate a derivative. For instance, in Figure 1,
we see the result of numerically computing the first derivative of a sinusoid using both
Fourier and Gabor multipliers. The results are identical. However, in Figure 2, the similar
result of computing the second derivative of a sinusoid shows some clear errors in the Gabor
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FIG. 1. The first derivative of a sinusoid, computed using Fourier and Gabor multipliers. There is
excellent agreement between the two results.

calculation. Little spikes appear in the smooth derivative, an artifact of the windowing
process. A hint to where those artifacts come from is shown in Figure 3, which plots the
graphs of a correction term for a second order differential operator. These errors are not
the result of numerical roundoff, but the consequence of properties of the Gabor multiplier
that appear with higher order derivatives. The spikes come from the window edges, and
identify the errors that appear in Figure 2.

With this motivations in mind, this paper shows how we can use Gabor multipliers to
accurately approximate more general partial differential equations, which are used to model
a physical system. We specify a functional calculus for Gabor multipliers, including how
they combine as sums, products, exponentials – and how well we can approximate noncon-
stant coefficient PDEs using these multipliers. The motivating idea is to make rigourous
the use of Gabor multipliers to model seismic waves, creating both one-way wave operators
and wavefield extrapolators for numerical experiments.

The model for this general behaviour of Gabor multipliers is the functional calculus
for Fourier multipliers, which are used extensively for representing and solving constant
coefficient PDEs.

The structure of the paper is to cover some background mathematics, including Fourier
multipliers and their properties. We then describe the results for Gabor multipliers, giv-
ing precise error terms for the approximations that arise in combining multipliers, and in
estimating non-constant coefficient PDEs.

BACKGROUND MATHEMATICS

Fourier multipliers

The technique of Gabor multipliers depends heavily on the well-known properties of
Fourier multipliers, which we review here.

A Fourier multiplier is an operator that modifies a signal f(x) by multiplying by some
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FIG. 2. The second derivative of a sinusoid, computed using Fourier and Gabor multipliers. The
Gabor result on the right shows some obvious errors, due to the windowing.
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FIG. 3. A hint to what is causing the errors – the Gabor multiplier missing a correction term that
identifies the edges of the window.
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function α(ξ) in the Fourier transform domain. These operators are typically used as spatial
or temporal filters and are familiar in seismic data processing.

We define the Fourier transform of a function f(x) on Rn as the integral

f̂(ξ) =

∫
f(x)e−2πix·ξ dx, (1)

which has an inverse given by the integral

f(x) =

∫
f̂(ξ)e2πix·ξ dξ. (2)

Given a function α(ξ) on the Fourier domain ξ, the Fourier multiplier Fα is the linear
operator defined by first transforming f to the Fourier domain, f̂ , multiplying by α, and
then inverting back to the spatial domain, so

(Fαf)(x) =

∫
α(ξ)f̂(ξ)e2πix·ξ dξ. (3)

In summary, the Fourier multiplier Fα is defined as the composition

Fα = F−1MαF , (4)

where F is the Fourier transform operator, F−1 is its inverse, and Mα is the operation of
multiplication by α. The function α is called the symbol of the multiplier Fα.

Operator norm

There is a close connection between the symbol α and the continuity properties of the
operator Fα. The operator Fα is continuous if and only if the function α is bounded. The
norm of the operator Fα is given as

||Fα|| = max
ξ
|α(ξ)|. (5)

This bound is a useful measure of how the operator grows when repeated, such as in a
wavefield extrapolation scheme.

Functional calculus

The multiplication Mα represents the Fourier multiplier Fα as an ordinary multipli-
cation operator. As a result, we get a simple functional calculus for Fourier multipliers.
Sums, differences, products, quotients, and even analytic extensions of Fourier multipliers
are again Fourier multipliers, with the natural symbol. For instance, with symbols α, β,
and real number t, it is easy to verify that the following combinations of operators hold:

tFα = Ft·α (6)
Fα + Fβ = Fα+β (7)
Fα − Fβ = Fα−β (8)
Fα · Fβ = Fα·β (9)

Fα(Fβ)−1 = Fα/β (10)
exp(Fα) = Feα , (11)
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provided all the resulting combinations of operators make sense. (eg. no division by zero.)

This functional calculus is often used in seismic imaging. For instance, the wave equa-
tion can be represented using Fourier multipliers, provided the velocity field is constant. A
one-wave wave operator is obtained by taking the square root of one of these operators, so
the functional calculus gives us

(Fα)1/2 = F√α. (12)

A wavefield extrapolator is obtained by exponentiating the square root operator, so we
obtain

exp(tFα)1/2 = Fet
√

α , (13)

where t is the step size for the extrapolation.

Representing a constant coefficient PDE

The Fourier multiplier operators can be used to represent any constant coefficient partial
differential equation. An example will demonstrate the idea.

The acoustic wave equation, for a medium with constant velocity c, is given by

1

c2

∂2f

∂t2
− ∂2f

∂x2
1

− ∂2f

∂x2
2

− ∂2f

∂x2
3

= g, (14)

where the functions f, g depend on both time t and spacial variables x1, x2, x3. Using the
Fourier inversion formula, the derivatives can be taken under the integral sign, and they
differentiate the exponential, giving factors −4π2ω2,−4π2ξ2

1 ,−4π2ξ2
2 ,−4π2ξ2

3 , where ω is
temporal frequency and ξ1, ξ2, ξ3 are spacial frequencies. Thus the differential operator is
given by a single Fourier multiplier Fα with symbol

α(ω, ξ1, ξ2, ξ3) = −4π2

c2
ω2 + 4π2ξ2

1 + 4π2ξ2
2 + 4π2ξ2

3 . (15)

The differential equation is succinctly written in operator form as

Fαf = g, (16)

where Fα is the Fourier multiplier.

We are looking for similar results with Gabor multipliers which will allow us to work
with non-constant velocity fields.

Gabor multipliers

A Gabor multiplier is a localized version of Fourier multipliers; it modifies the signal in
the Gabor domain, by multiplying the transformed signal by a function (or symbol) of two
variables, α(k, ξ), where k roughly indicates location in space, and ξ is spacial frequency.†

†This localization helps us deal with varying velocity fields in seismic, but also changes the elegant func-
tional calculus of the Fourier multipliers.
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The Gabor transform is defined by first selecting two families of window functions
{vk(x)}M

k=1, {wk(x)}M
k=1, non-negative functions on Rn, that satisfy the partition of unity

condition, ∑

k

vk(x)wk(x) = 1, for all x. (17)

In practice, the windows may be selected to be copies of a single bump function, trans-
lated around to cover the region of interest in space. Or it could be a collection of boxcar
windows (or indicator functions), each one constant on some region when the physical pa-
rameters of what we are modeling are mainly constant. There is great freedom in the choice
of windows, provided one respects the partition of unity condition.

A signal f(x) is localized by multiplying with window wk(x), and the Gabor transform
is defined as a series of Fourier transforms for these localized signals. The Gabor transform
Gf of function f is itself a function of two variables, given as

(Gf)(k, ξ) =

∫
f(x)wk(x)e−2πix·ξ dx. (18)

Equivalently, in operator notation we have

(Gf)(k, ξ) = F(wkf)(ξ) = (FMwk
f)(ξ). (19)

The function f can be recovered from its Gabor transform as

f(x) =
∑

k

vk(x)F−1(FMwk
f), (20)

because of the partition of unity condition on the windows.

The Gabor multiplier Gα is obtained by inserting as multiplier the function α(k, ξ) into
the above inversion formula, thus modifying the signal f in the Gabor domain. Notice
that the Gabor symbol α(k, ξ) is a function of two variables, and when we insert it into
the sum,we should use a function that depends only on the frequency variable ξ. We let
αk denote the function of one variable, with αk(ξ) = α(k, ξ). Thus we define the Gabor
multiplier operator as

Gαf =
∑

k

Mvk
F−1Mαk

FMwk
f. (21)

In operator notation, we thus have

Gαf =
∑

k

Mvk
F−1Mαk

FMwk
f =

∑

k

Mvk
Fαk

Mwk
f, (22)

where we replaced the operator F−1Mαk
F with its Fourier multiplier Fαk

.

We have arrived at a very compact form for the Gabor multiplier Gα as a sum of local-
ized Fourier multipliers,

Gα =
∑

k

Mvk
Fαk

Mwk
. (23)
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RESULTS

Operator norm - for Gabor

It is useful to know how large in norm these Gabor multipliers will be. When an opera-
tor is iterated, it is important to keep the norm below one, to prevent exponential growth in
the result, and to minimize the accumulation of numerical errors.

Unfortunately, for the general Gabor multiplier, it is easy to cook up realistic examples
where the norm of the operator grows with the number of windows. In fact, we can find
growth on the order of M1/2,

||Gα|| ≈
√

M max
k,ξ

|α(k, ξ)|, (24)

where M is the number of windows. This is an unfortunate result. It shows the norm of
the Gabor multiplier depends not only on the symbol α, but also on the particular choice of
windows.

There is one case, though, that the operator norm is well behaved. We can state it as a
theorem: If the windows are chosen symmetrically, so vk = wk for each k, then we have
that the Gabor multiplier is bounded above by the maximum of its symbol, so

||Gα|| ≤ max
k,ξ

|α(k, ξ)|. (25)

This is very much like the Fourier multiplier result, where the norm of the Fourier multiplier
actually equals the maximum of α.

Functional calculus - for Gabor

What happens when you add or subtract Gabor multipliers? They behave as you expect:
the result is a Gabor multiplier, whose symbol is the sum or difference of the first two
symbols. That is

Gα + Gβ = Gα+β, (26)
Gα −Gβ = Gα−β. (27)

Similarly, if you scale a Gabor multiplier by a fixed number λ, the result is a new Gabor
multiplier with the scaled symbol:

λGα = Gλα. (28)

These three results are summed up by saying the representation of symbols as Gabor mul-
tipliers is linear.

Other combinations of Gabor multipliers are not so well-behaved. We only get approxi-
mations to the expected result. So, for instance the product of two Gabor multipliers Gα, Gβ

is only approximately a Gabor multipler whose symbol is the product of the symbols α, β:

GαGβ ≈ Gαβ. (29)
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Similarly, the square of a Gabor muliplier with symbol α is approximately a multiplier with
symbol α2:

(Gα)2 ≈ Gα2 ; (30)

the square root is given approximately as

(Gα)1/2 ≈ G√
α; (31)

and the multiplier with symbol α−1 acts as an approximate inverse, with

GαGα−1 ≈ I. (32)

We also might expect that the exponential of a Gabor multiplier is approximated as a
multiplier with exponential symbol:

exp(Gα) ≈ Geα . (33)

However, we are not yet able to show this rigorously.

To verify these approximations, it is instructional to start with a simple case. Assume
the windows wk are indicator functions (i.e. boxcar functions, taking value 1 on set Ωk,
zero elsewhere), and let us use symmetric dual windows for the multipliers, so

Gα =
∑

k

Mwk
Cαk

Mwk
. (34)

The product of two such operators will give

GαGβ = (
∑

k

Mwk
Cαk

Mwk
)(

∑
j

Mwj
Cβj

Mwj
) (35)

=
∑

j,k

Mwk
Cαk

Mwk
Mwj

Cβj
Mwj

. (36)

Since we have boxcar windows, the product in the middle, Mwk
Mwj

, is zero, except when
j = k, at which point it is just Mwk

. The double sum collapses to

GαGβ =
∑

k

Mwk
Cαk

Mwk
Cβk

Mwk
(37)

=
∑

k

Mwk
(Cαk

Mwk
−Mwk

Cαk
+ Mwk

Cαk
)Cβk

Mwk
(38)

=
∑

k

Mwk
[Cαk

,Mwk
]Cβk

Mwk
+

∑

k

Mwk
Cαk

)Cβk
Mwk

(39)

=
∑

k

Mwk
[Cαk

,Mwk
]Cβk

Mwk
+

∑

k

Mwk
C(αβ)k

)Mwk
, (40)

= ∆ + Gαβ, (41)

where we recognize the second sum in the next-to-last line as the multiplier Gαβ , and the
remaining term we call the error term ∆.
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Thus, the error in the approximation GαGβ ≈ Gαβ is given as

∆ =
∑

k

Mwk
[Cαk

,Mwk
]Cβk

Mwk
, (42)

where the bracket [·, ·] in that sum is a shorthand notation for the commutator of two oper-
ators, written as

[Cαk
,Mwk

] = Cαk
Mwk

−Mwk
Cαk

. (43)

The error ∆ is an amalgamation of operators [Cαk
,Mwk

]Cβk
and since we are using sym-

metric windows, we can bound the size of the error as

||∆|| ≤ max
k
||[Cαk

,Mwk
]Cβk

||. (44)

The key to controlling the size of the error ∆ is in controlling the commutators [Cαk
,Mwk

].

On the other hand, from the form of the error ∆, we note that the errors in the operator
approximation are typically concentrated near the edges of the support of the windows.
That is, near the points where window functions jump between zero and one. The com-
mutator is non-zero near the places where the window is non-constant. (And “nearness” is
measured by the width of the convolution operators.)

The approximation (Gα)2 ≈ Gα2 follows from the previous calculation, replacing sym-
bol β in the product with α. In this case, the error term is

∆ =
∑

k

Mwk
[Cαk

,Mwk
]Cαk

Mwk
. (45)

The approximation (Gα)1/2 ≈ Gα also follows from the product calculations, replacing
symbols α, β in the product with

√
α. In this case, the error term is

∆ =
∑

k

Mwk
[C√αk

,Mwk
]C√αk

Mwk
. (46)

The approximate inverse given as GαG−1
α ≈ I also follows from the product calcula-

tions In this case, the error term is

∆ =
∑

k

Mwk
[Cαk

,Mwk
]Cα−1

k
Mwk

. (47)

Finding the error for exponentiating a Gabor multiplier is left for future work.

Functional calculus - special case

Sometimes it is necessary to combine a Fourier multiplier with a Gabor multiplier. This
occurs, for instance, in Gabor deconvolution, where the source wavelet is represented by a
single Fourier multiplier.
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In the special case where the synthesis windows vk are all equal to one (so the wk form
a partition of unity on their own), then we have

FαGβ = Gαβ. (48)

Thus, the Fourier multiplier times the Gabor multiplier is another Gabor multiplier, whose
symbol αβ is simply the product of the two symbols α, β.

Notice in this formulation, α is a function of one variable, β is a function of two vari-
ables, and so

(αβ)(k, ξ) = α(ξ)β(k, ξ). (49)

Also notice that the Fourier multiplier Fα appears on the left in the product FαGβ; this
has to do with our choice of the windows vk being constant one.

Approximating a non-constant coefficient PDE - with Gabor

The typical PDE involves sums of differential operators of the form

a(x)
∂N

∂xn1
1 ∂xn2

2 · · · ∂xnn
n

, (50)

each of which can be understood as a multiplier Ma times a simple differential operator D.

By simple, we mean a differential operator of the form

D =
∂N

∂xn1
1 ∂xn2

2 · · · ∂xnn
n

. (51)

Such an operator is represented exactly by the Fourier multiplier Fα with symbol

α = (−2πi)Nξn1
1 ξn2

2 · · · ξnn
n . (52)

Using this Fourier multiplier, we create a Gabor multiplier that represents D exactly.

There are three ways to do this. The first method chooses the synthesis windows to
be constant one, vk ≡ 1. In this case, the wk form a partition of unity, so the identity
operator is expressed as a sum, I =

∑
k Mwk

. For the differential operator D, we have
D = Fα = Fα

∑
k Mwk

=
∑

k FαMwk
. So we have

D = Gα =
∑

k

Mvk
FαMwk

, with vk ≡ 1. (53)

The second method is to choose the analysis windows to be constant one, wk ≡ 1. Now
the vk form a partition of unity, so I =

∑
k Mvk

. As in the first case, we get the result

D = Gα =
∑

k

Mvk
FαMwk

, with wk ≡ 1. (54)
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With smooth, symmetric windows (vk = wk), it is easy to verify that

Fα = Gα =
∑

k

Mwk
FαMwk

+ lower order multipliers. (55)

As an example, we check a first order operator, D = ∂/∂x1. By the product rule,

Mwk
DMwk

f = wk(wk
′f + wkf

′) = wkwk
′f + (wk)

2f ′. (56)

Summing over k gives

Gαf =
∑

k

Mwk
DMwk

f = (
∑

k

wkwk
′)f + (

∑

k

(wk)
2)f ′. (57)

By the partition of unity, the second sum on the right is one, and the first sum is zero, as
the derivative of the first sum. Thus we have

Gαf = Df, (58)

so the Gabor multiplier Gα = D represents this first order differential operator exactly.

A second order operator has a correction term. With operator D =
∂2

∂xi∂xj

, and symbol

α(ξ) = −4π2ξiξj , a calculation as above shows that

Gα = D + Md, (59)

where d(x) =
∑

k wk(x) ∂2

∂xi∂xj
wk(x) is the correction term coming from the product rule.

The operator Md is simply multiplication (in the spacial domain) by the function d(x) and
is considered a zero-th order operator, and thus of lower order than D.

Even in the constant velocity wave equation, there is a correction term. The (spacial)
Laplacian, a second order operator, is given by a Fourier multiplier, and

∇2 = Fα = Gα −Md (60)

where α(ξ) = −4π2|ξ|2 is the symbol for Fourier multiplier of the Laplacian, and d(x) =∑
k wk∇2wk is the symbol for the lower order correction term.

It is worth noting that the correction term Md is a multiplication operator, with support
on the transition areas of the windows: where the windows are not constant. This correction
is easy to introduce in numerical computations.

Besides the simple differential operators, the PDEs involves multiplication operators
Ma. Provided the function a(x) is slowly varying, it can be approximated by a Gabor mul-
tiplier as follows. With well-chosen windows, we can assume that a(x) is nearly constant
on the support of window products vk(x)wk(x), for each k. Say a(x) is close to the value
ak on the support of vk(x)wk(x). Then

a(x)vk(x)wk(x) ≈ akvk(x)wk(x), (61)

CREWES Research Report — Volume 20 (2008) 11
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and as operators, we have
MaMvk

Mwk
≈ akMvk

Mwk
. (62)

Summing over k, and using the partition of unity condition, gives

Ma ≈
∑

k

Mvk
akIMwk

. (63)

This last sum is a Gabor multiplier, with symbol α(k, ξ) = ak. Thus we have the approxi-
mation

Ma ≈ Gα. (64)

More generally, the differential operator MaD, where D is a simple differential operator
as described above, can be approximated by a Gabor multiplier. We obtain the approxima-
tion

MaD ≈ Gα + lower order terms, (65)

where the symbol is given as α(k, ξ) = akα0(ξ), using α0 as the Fourier multiplier symbol
corresponding to D.

For instance, in the non-constant velocity case, the wave equation has the Laplacian
multiplied by coefficient a(x) = 1

c(x)2
. We then can write

Ma∇2 = MaFα0 = Ma(Gα0 −Md) ≈ Gα −Mad, (66)

where α(k, ξ) = −4π2ak|ξ|2 is the Gabor symbol and d(x) =
∑

k wk∇2wk gives the
correction term.

Again, it is worth pointing out that the wave equation, represented by the Gabor multi-
plier Gα, requires a correction term Mad.

CONCLUSIONS

We have presented Gabor multipliers as a localized version of Fourier multipliers,
which allows for nonstationary filtering of data signals. The Gabor multipliers are ex-
pressed as sums of composition of multiplications and convolutions (Fourier multipliers).
From this representation, we obtain a functional calculus for the Gabor multipliers, show-
ing how sums, products, quotients, and square roots are calculated, including correction
terms. We also show how Gabor multipliers are used to represent partial differential op-
erators, using the same symbol as the Fourier multiplier representations, plus lower order
correction terms.

Future work will include applying these correction terms to specific seismic data pro-
cessing algorithms.
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