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Applying the phase congruency algorithm to seismic data 
slices: A carbonate case study 

Brian H. Russell1, Dan Hampson,1 and John Logel2 

ABSTRACT 
The two-dimensional phase congruency algorithm using the log Gabor transform 

as developed by Kovesi (1996) is used to look for features such as edges and corners 
on two-dimensional images. In image processing, the algorithm has applications to 
robot vision and feature enhancement. In seismic analysis, we also look for features 
on 3D seismic cubes, but the features we look for are structural in nature. We 
implemented the Kovesi algorithm in a seismic analysis and display program. In our 
implementation, we use this algorithm to look for faults and fractures on slices taken 
from 3D seismic volumes. We illustrate this technique using a karst collapse study 
and a fractured carbonate dataset. We also compare this method with the more 
standard coherency method for identifying seismic discontinuities. 

 INTRODUCTION 
Traditionally, the analysis of seismic data involved looking for continuous events 

on seismic data, from which structural and stratigraphic features could be mapped.  
However, we are also interested in mapping discontinuous features such as faults and 
fractures. A method for identifying these discontinuities was first introduced by 
Bahorich and Farmer (1995) and called the coherency algorithm (although it is 
important to note that the algorithm looks for lack of coherency in the seismic data).  
This method, based on cross-correlation between adjacent traces, has remained the 
industry standard since its introduction and has undergone several major 
enhancements.   

However, researchers in other areas of image analysis, such as robot vision and 
feature identification, have also been looking at ways to identify discontinuities on 
their images. One such development is the phase congruency algorithm (Kovesi, 
1996), which is able to identify corners and edges on images of shapes and possible 
obstacles to enhance robot vision. In this paper, we have implemented the phase 
congruency algorithm in a seismic analysis toolbox and apply it to seismic data slices 
to look for discontinuities on these slices. To understand how this method compares 
with the standard coherency algorithm, we will first briefly review coherency. We 
will then discuss the theory of phase congruency and will apply the method to a 
simple robot vision example consisting of two overlapping shapes. We will then 
apply the method to two seismic case studies, the first involving karst collapse 
features and the second involving a fractured carbonate reservoir. 
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THE COHERENCY ALGORITHM 
An algorithm that was developed specifically for the identification of faults and 

other structural features on seismic data was first proposed by Bahorich and Farmer 
(1995) and was called the coherency algorithm. The mathematics of this algorithm 
was described by Marfurt et al. (1998), in which two different algorithms are 
described: C1 and C2.  Coherency algorithm C1 is based on a normalized sum of the 
cross-correlation between each trace and its in-line and cross-line neighbors, as 
shown in Figure 1 from the original Bahorich and Farmer (1995) paper. 

 
FIG. 1.  The first  coherency algorithm performed a normalized sum between the cross-
correlation between a trace (A) and its in-line and cross-line neighbours (traces B and C). 
(from Bahorich and Farmer, 1995). 

Marfurt et al. (1998) extended the initial algorithm to a semblance-based approach 
over an arbitrary number of traces, and called this C2 coherency. The analysis 
window now becomes a cube of data in the in-line, cross-line and time directions, and 
this cube of data is correlated with itself to compute a covariance cube. The 
maximum value of covariance gives the coherency value. The C2 algorithm produced 
improved vertical resolution over the C1 algorithm and also revealed more subtle 
discontinuities. However, the algorithm is sensitive to the size of the rolling window 
used, including both the time and trace window. 

A third version of the coherency algorithm, called eigenstructure-based coherence, 
was described by Gersztenkorn and Marfurt (1999). In this approach, the covariance 
matrix computed for the semblance approach is analyzed in the 
eigenvector/eigenvalue domain, and eigenstructure coherence is defined as the ratio 
of the dominant eigenvalue to the total energy in the analysis cube. Again, this third-
generation algorithm showed improved resolution over the previous two versions of 
the method. This is shown in Figure 2, where the three versions of the coherency 
method produce similar results, but the definition of the faults and discontinuities 
improves with each method. 

For details of the three algorithms, refer to the paper by Gersztenkorn and Marfurt 
(1999). However, it is important to note that all three coherency methods just 
described are similar in that they compare neighbouring traces by “lagging” them past 
each other and looking for discontinuities.  
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                            (a)                                                                   (b) 

 
     (c)      (d) 

FIG. 2.  Various applications of the coherency algorithm, where (a) shows a time slice over a 
salt dome in the Gulf of Mexico, (b) shows the first coherency algorithm, (c) shows the 
semblance algorithm and (d) shows the eigenstructure algorithm (from Gersztenkorn and 
Marfurt, 1999).   

 
In the next section we will describe a technique which was initially used to detect 

edges and corners on digital images, called phase congruency.  Subsequently, we will 
apply this method to seismic data and compare it with the coherency algorithm. 

THEORY OF PHASE CONGRUENCY 
The phase congruency (PC) algorithm was developed to detect corners and edges 

on 2D digital images (Kovesi, 1996). To understand the concept behind phase 
congruency in 2D space, with x and y coordinates, it is instructive to first understand 
the algorithm in 1D, with simply an x coordinate. 

Figure 3(a), from Kovesi (2003), shows n individual Fourier series terms over a 
simple step function, where the horizontal axis is the x axis and the vertical axis is the 
amplitude of the Fourier terms. Note that these terms are all in-phase at the step.  To 
quantify this concept, we plot the real and imaginary values for all n terms and plot 
them in the polar plot shown in Figure 3(b). We can then draw the vectors as shown, 
with their related amplitude and phase values for all n terms.   
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                                           (a)                                                                                      (b) 
 
FIG. 3.  The concept of phase congruency in 1D, where (a) shows that the individual terms in 
a Fourier series will be in-phase at a step, and (b) shows a polar plot of the real and 
imaginary Fourier  used to compute phase congruency (from Kovesi, 2003). 

 
Kovesi (2003) then shows that a simple measure of phase congruency is given by 
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where An(x) and φn(x) are the length and phase angle of each of the individual n 
amplitude vectors, and E(x) and )(xφ are the length and phase angle of the summed 
vectors.    

Kovesi (2003) then gives a more advanced formula that builds in a weight factor 
for frequency spread and a noise threshold. However, equation (1) is sufficient for an 
understanding of the basic algorithm. More importantly, Kovesi (2003) shows how to 
extend equation (1) to the two-dimensional image domain. This is done using 
oriented 2D Gabor wavelets in the 2D Fourier domain. In the initial implementation, 
Kovesi used 2D Gaussian wavelets, but in a later implementation he used log Gabor 
wavelets, as introduced by Field (1987). The advantage of the log Gabor transform 
when used for the radial filtering is that it is Gaussian on a logarithmic scale and thus 
has better high frequency characteristics than the traditional Gabor transform (Cook 
et al., 2006).   

Before describing the mathematics of the individual filter and transform options, 
let us look at the simplified flow chart of the method as shown in Figure 4.  This flow 
chart is simplified because it also does not discuss the weighting terms and noise 
thresholding when applied to 2D data.  But the figure gives the fundamental idea of 
the algorithm.   

The complete algorithm was implemented initially by Kovesi using MATLAB 
(Kovesi, 1996-2003) and was subsequently implemented using both MathCad and 
C++ by the first two authors of this report. 
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FIG. 4. A flowchart illustrating the basic steps in the phase congruency algorithm. 

 
 

As can be seen in Figure 4, the first steps in the 2D phase congruency algorithm 
are to transform the data to the 2D Fourier domain, then apply N*M filters (N radial 
log Gabor filters multiplied by M angular filters). The log Gabor filters are computed 
over N “scales” S, where S = 0, … , N-1.  Typically, the value of N is between 4 and 
8.  Each log Gabor filter is computed by the formula 
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where r = the radius value from the zero frequency value, λS is the scale value, where 
λS = 3mS, with a default value of m = 2.1, σ = 2ln(0.55)2 and lp is a low pass 2D 
Butterworth filter.  Visual examples of this filter will be shown in the next section. 

The angular filters are created over M orientations or angles θ, where θ = 0, π/M, 
…, (M-1)π/M.  The default value of M is 6, in which case the angles will go from 0o 
to 150o in increments of 30o.   Again, visual examples of these filters will be shown in 
the next section. 

After the N*M filters are applied, each filtered image is transformed back to the 
spatial domain and, after appropriate weighting and noise thresholding, are summed 
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over the scales to produce an image at each orientation. These images are then 
analyzed using moment analysis which, as described by Kovesi (2003) is equivalent 
to performing singular value decomposition on the phase congruency covariance 
matrix. In moment analysis terms, the maximum moment M and minimum moment m 
(which correspond to the singular values) are computed as follows: 
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According to Kovesi (2003), the interpretation of the maximum and minimum 
moments, which are the final results, are as follows. The magnitude of the maximum 
moment indicates the significance of a feature on the image, or its “edge”.  The 
magnitude of the minimum moment gives an indication of a “corner”. In this study, 
we will only display the maximum moment M, since we are interested in edges.  
However, there may be some motivation to look at corners in a future study. 

A SIMPLE EXAMPLE 
Let us now look at applying phase congruency to a simple example. This example 

was used as a test case to analyze the effectiveness of the MATLAB code developed 
by Peter Kovesi at the University of Western Australia. This code is freely available 
for download (Kovesi, 1996-2003). It was felt that in order to proceed with a re-write 
of the code in the Hampson-Russell software program suite (which would require 
significant effort) a suitable test case should be created to give us confidence that the 
algorithm worked in a reasonable way. 

Since the original algorithm was developed to identify features on a 2D 
photographic that could be analyzed for robot vision, it was decided that a suitable 
example would consist of the cylinder and cube shown in Figure 5(a). The map view 
of the shapes is shown in Figure 5(b). The amplitude-coded map shown in this figure 
is what was presented to the phase congruency algorithm, where the cylinder had an 
amplitude of 2, the cube had an amplitude of 1, and the background had an amplitude 
of 0. While the features of the square and cylinder are obvious to the eye in Figure 5, 
notice how dispersed they become after a 2D Fourier transform, where its real 
component is shown in perspective view of in Figure 6(a), and in map view in Figure 
6(b).  It is on the Fourier transform that the initial analysis will be done. (Note: the 
keen-eyed MATLAB user will observe that only Figure 5(b) looks like a MATLAB 
plot. The other images were created using MathCad, into which the first author 
converted the MATLAB code for a more mathematical understanding of the 
algorithm.  Figures 8 through 10 were also created in MathCad, while we revert to 
MATLAB for Figure 11.) 
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(a)      (b) 

 
FIG. 5.   A simple test designed for the MATLAB version of the phase congruency algorithm, 
consisting of a cylinder of amplitude 2 poking through a square of amplitude 1, on a 
background of amplitude 0.  The perspective view is in (a) and the map view is in (b).  

 

       
       (a)          (b) 

 
FIG.  6.  The real component of the 2D Fourier transform of the image shown in Figure 5(b), 
where (a) shows the perspective view of the transform and (b) shows the map view. 

After the 2D Fourier transform, the first step is the creation of the filters.  It was 
decided to use 4 scales (with m = 2.1) and 6 orientations, which were the defaults 
suggested by Kovesi (1996-2003).  Figure 7 shows the perspective plots of the four 
log Gabor filters, from S = 0 to S = 3.  As expected, the filters get more “spiky” as the 
scale increases.  The map view of the four filters is shown in Figure 8. 

 

Note that in Figures 6 though 10, the Fourier displays have been “unwrapped” so 
that kx,ky = 0,0 is in the centre of the plot. This is preferable for display purposes, but 
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in analysis mode the zero values are at the corners and the Nyquist/2 values are in the 
centre. 

 

 
FIG. 7. Perspective views of the four log Gabor filters used in the phase congruency analysis 
of the image shown in Figure 5(b), for scales from 0 to 4, where m = 2.1 in Equation 2.  

 

 
FIG. 8. Map views of the four log Gabor filters used in the phase congruency analysis of the 
image shown in Figure 5(b), for scales from 0 to 4, where m = 2.1 in Equation 2.  
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Next, let us look at the six angular filters, shown in Figure 9. In this case, we will 

look only at the map view of the filters, since it is more instructive than the 
perspective view. 

 
FIG. 9.   Map views of the six angular filters used in the phase congruency analysis of the 
image shown in Figure 5(b), for angles from 0 to 150o.  

 

        
                                          (a)                                                                                   (b) 

        
                                         (c)                                                                                        (d) 
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FIG. 10. Map views of all 24 combinations of radial and angular filters applied in this example, 
where (a) shows the filters at all angles for the first scale (Scale0), (b) shows the filters at all 
angles for the second scale (Scale1), (c) shows the filters at all angles for the third scale 
(Scale2), and (d) shows the filters at all angles for the last scale (Scale3). 

Finally, Figure 10 shows the 24 individual filters, in groups of six corresponding 
to the angle range for each scale. 

At this point, we could continue in this manner, showing the Fourier transforms 
and their inverses at each step of the analysis. However, this would be quite tedious 
and not very instructive. The key thing to understand is the when the filters in Figure 
10 are applied and their inverse transforms are computed, we stack over the scales for 
each angle and then apply moment analysis. The final result is shown in Figure 11(b), 
with the initial image shown in Figure 11(a) for reference. Notice how well that the 
edges of the two structures have been defined.  

 

   
(a)     (b) 
 

FIG. 11. Map views of the (a) original image consisting of a cylinder and a cube from figure 
5(b), and (b) the final analysis using phase congruency. Notice the clear definition of the 
edges of the two objects. 

 
Of course, the example shown in this section is extremely simple and also not 

representative of the type of image we want to analyze on our seismic slices. Thus, in 
the following sections, we will implement the phase congruency algorithm on seismic 
data slices. 

IMPLEMENTATION ON 3D SEISMIC VOLUMES 
To apply the phase congruency algorithm to seismic data slices, we first had to 

find a way to feed seismic data slices to the program. This could have been done 
either by exporting the data slices in a format understood by the Kovesi MATLAB 
program (Kovesi, 1996-2003) or by converting his MATLAB code to a format in 
which the data slices were in natural format.  We chose the latter option, converting 
the MATLAB code to C++ code in the Hampson-Russell seismic analysis suite of 
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programs. Thus, phase congruency becomes one option in a series of options for 
analyzing seismic data. 

A simple schematic diagram showing the way in which the phase congruency 
method was implemented on seismic data is shown in Figure 11. Although this 
algorithm proceeds by analyzing constant time slices, it should also be possible to 
apply the algorithm to structural, or stratigraphic, slices. 

 

FIG. 12. A schematic showing the implementation of the phase congruency algorithm to 
seismic data. 

We will now implement the phase congruency algorithm on several seismic 
examples. The first example will be a Karst collapse study from Boonsville, Texas, 
and the second example will be from a fractured carbonate reservoir in Alberta. 
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KARST COLLAPSE CASE STUDY 
We will first analyze a 3D dataset from the Boonsville area of north Texas. The 

wells and 3D seismic from this dataset are public domain, and available from the 
Bureau of Economic Geology at the University of Texas. A map of the area is shown 
in Figure 13.  

 

 
 

FIG. 13. A map showing the location of the Boonsville gas field. (Hardage et al., 1996). 
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The geology of the area and exploration objectives of the Boonsville dataset have 
been fully described by Hardage et al. (1996). To illustrate the geology, a 
representative seismic section from this paper is shown in Figure 14. 

                                   A                                   B                            C 

 
FIG. 14.  A representative seismic section from the 3D Boonsville dataset, with the producing 
horizons numbered from 1 to 4, and the Karst collapse features identified by the ellipses. This 
line is reconstructed at the points A, B and C on the survey as indicated in Figure 16(a) (from 
Hardage et al., 1996). 

In the Boonsville gas field, production is from the Bend conglomerate, a middle 
Pennsylvanian clastic deposited in a fluvio-deltaic environment. In Figure 14, the top 
of the Bend formation is indicated by event 1 at 850 ms, the Caddo, and the base of 
the Bend is indicated by event 4 at 1050 ms, the Vineyard.   

The Bend formation is underlain by Paleozoic carbonates, the deepest being the 
Ellenburger Group of Ordovician age. The Ellenburger contains numerous karst 
collapse features which extend up to 760 m from basement through the Bend 
conglomerate. As can be seen in Figure 14, these Karst collapse features, illustrated 
by the vertical ellipses, have a significant effect on the basal Vineyard event and 
continue vertically almost until the top Caddo event.   
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A schematic drawing of a typical Karst collapse feature is shown in Figure 15. 
This figure was adapted by Hardage et al. (1996) from work done by Lucia (1995) 
using Ellenburger outcrops in the El Paso region. 

 
 

 

 
FIG. 15.  A schematic of a karst collapse feature. (Hardage et al., 1996, adapted from Lucia, 
1995). 

The karst collapse features are also evident when we look at the amplitude and 
time structure maps from the Vineyard (base Bend conglomerate) horizon (event 4 on 
the seismic section in Figure 14), as shown in Figure 16. The circular white areas in 
the amplitude map of Figure 16(a) clearly show these Karst collapse features, as do 
the circular structures of the time structure map of Figure 16(b). In Figure 16(a) the 
reconstructed seismic profile of Figure 14 is shown by the points A, B and C. Also, in 
both figures, the white rectangle indicates the extent of the public domain 3D survey 
which will be analyzed next. Hardage et al. (1996) demonstrate, using measured 
pressure data, that these karst collapse features affect reservoir compartmentalization 
within the producing Bend formation. 
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        (a)      (b) 

FIG. 16.  Maps of (a) amplitude and (b) time structure from the Vineyard event (event 4) on 
Figure 14, where the black line A-B-C shows the seismic profile from Figure 13 and the white 
box on each figure shows the extent of the public 3D survey analyzed in the next figure (from 
Hardage et al., 1996). 

 
It is therefore important to identify the karst collapse features from the seismic 

volume, and we will do this using both the phase congruency and coherency methods. 
Figure 17 shows a set of composite slices (in the X, Y and Z directions) over the 3D 
seismic survey illustrated by the white outline in Figures 16(a) and (b), where Figure 
17(a) shows the original seismic survey and Figure 17(b) shows the phase congruency 
results. On Figure 17(a), the Y-direction, or in-line, slice shows the karst features 
quite clearly (they are annotated with the red ellipses) but on the horizontal time slice 
they are not as clear. On Figure 17(b), the in-line slice shows the karst features even 
more clearly than on the seismic display (again, they are annotated with the red 
ellipses) and on the horizontal time slice they are also much clearer. 

 
       (a)        (b) 

 
FIG. 17. A vertical slice showing karst features superimposed on a horizontal slice at 1080 
ms, roughly halfway through the karst collapse, where (a) shows the seismic volume and (b) 
shows the phase congruency volume.  
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Figure 18 shows the same set of composite slices (in the X, Y and Z directions) as 
in Figure 17, where Figure 18(a) again shows the original seismic survey and Figure 
18(b) now shows the coherency results.   

 
       (a)        (b) 

 
FIG. 18. A vertical slice showing karst features superimposed on a horizontal slice at 1080 
ms, roughly halfway through the karst collapse, where (a) shows the seismic volume and (b) 
shows the coherency volume.  

 
On Figure 18(b), the in-line slice shows the karst features more clearly than on the 

seismic display (again, they are annotated with the red ellipses) than on the seismic 
display, but slightly less clearly than on the phase coherency. 

FRACTURED CARBONATE CASE STUDY 
Our second case study comes from a fractured carbonate reservoir in Alberta. The 

exact location of this reservoir cannot be revealed due to confidentiality. Figure 19 
shows a time slice of phase congruency through the main producing interval in the 
reservoir. There are two things to note on this time slice. First, the producing wells 
are shown as green circles on the slice. Notice the higher density of wells in the lower 
portion (southern part) of the map. In fact, there are only two producing wells in the 
top portion (northern part). Second, notice the high density of fractures in the 
southern part of the map that correspond very well to the high production. The 
fractures in the southern part of the map are aligned along a dominant east-west trend.  
Conversely, notice the lower density of fractures in the northern part of the map that 
correspond to lower production. Also, the fractures in the northern part of the map 
appear to be in conjugate sets, running both north-south and east-west. It is obvious 
from this map that the phase congruency algorithm has been able to identify fracture 
patterns that correspond to carbonate production. 
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FIG. 19. A time slice of phase coherency within the reservoir interval of a carbonate reservoir 
in Alberta, where the yellow circles represent producing wells. 

 
Next, Figure 20 shows a vertical seismic section on the left along the result of 

analysis with three different algorithms: an un-named contractor section which 
attempts to display fracture density, phase congruency, and curvature. (Curvature is 
an attribute that we have not discussed in this paper. For more details on curvature, 
see Roberts (2001)). 

On the three computed fracture plots an FMI, or Formation MicroImager, log 
curve has been superimposed, showing the density of fractures. Note that this log 
does not correlate well with the commercial product, but shows good correlation with 
both the phase congruency and curvature plots. In particular, the green colour 
indicates large values of both phase congruency and curvature in both plots and 
corresponds to large values of fracture density on the FMI log. 
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FIG. 20. The seismic section on the left and, from left to right: a contractor section that 
computes fracture density, phase congruency and curvature.  Superimposed on the three 
computed sections on the right is an FMI, or Formation MicroImager, log that measures 
fracture density. 

Finally, Figure 21 shows a plot of initial production (in cubic metres) versus 
amplitude of phase congruency, computed over six wells. As can be seen in this plot, 
there is a roughly linear trend between initial production and the amplitude of the 
phase congruency. In other words, higher phase congruency correlates with more 
fractures and more fractures correlates with more production. 
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FIG. 21. A crossplot of initial production from the carbonate reservoir with phase congruency 
amplitude. 
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CONCLUSIONS 
In this paper, we implemented a new scheme for identifying discontinuities on 

seismic data slices, called phase congruency. As we discussed, the phase congruency 
approach has found application in the identification of features on images and is used 
in image processing for robot vision. However, the method had found little 
application in the seismic area and so we decided to see if it could aid in the search 
for discontinuities on seismic time slices. After a discussion of the coherency method, 
which is the generally accepted method for identifying seismic discontinuities, we 
then described the theory of the phase congruency method. Next, we showed how the 
method works on a simple image consisting of an overlapping cylinder and cube.  
Finally, we applied the algorithm to two seismic examples, comparing its results with 
other seismic techniques such as coherency and curvature. 

In our first seismic example, a karst collapse study from the Boonsville field in 
Texas, we found that phase congruency did a good job in identifying these karst 
features. From an economic standpoint, the identification of the karst features was of 
great interest since it lead to the identification of compartmentalization in the 
reservoir interval above the karst collapse zones. 

Our second seismic example was a fractured carbonate reservoir from Alberta. We 
found that the phase congruency method was able to identify the areas in the field in 
which maximum fracturing had occurred. These areas of high fracturing in turn 
correlated with the highest initial production values in the field. When amplitude of 
phase congruency was plotted against initial production, a good correlation was 
found. 

In this study, we found that other attributes such as coherency and curvature also 
performed well. However, the phase congruency method when applied to seismic 
slices gives a new and different seismic discontinuity attribute, one that can add value 
to ongoing seismic exploration and production efforts. 
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