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ABSTRACT

Non-linear inverse scattering, when it is applied to the big interesting seismic imaging and
inversion problems, can be very complicated, and in a tutorial setting one risks losing all
the basic concepts and insights in a morass of arithmetic. We can usefully proceed, how-
ever, by considering direct inversion within a highly simplified model: reflections from
a single interface at a known depth, with known medium parameters above the interface
and unknown medium parameters below. The seismic data reduce in this case to a single
reflection coefficient, and the medium to be solved for reduces to a few scalar values. We
consider the case of an absorptive target medium. A simple absorptive reflection coeffi-
cient may be expanded about small parameter contrasts and incidence angles, and used,
angle by angle (AVA), or frequency by frequency (AVF), to directly determine simultane-
ous wavespeed and Q contrasts. Linear and non-linear inversion may occur algebraically
or using an inverse series. The latter is evidently the better approach of the two, with the
former becoming less tractable for cases involving large angles and large contrasts.

INTRODUCTION

A main aim here is to provide a sense of how inverse solutions that directly transform
seismic data information into estimates of medium properties can be derived. We will do
this within the framework of AVA inversion, a reduction of the full problem of seismic
inversion to the determination of the parameter contrasts that have given rise to a particular
reflection coefficient.

Whereas Zhang and Weglein (2009a,b) have provided formulas for direct non-linear
inversion of acoustic and elastic targets with seismic reflection coefficients as input, similar
formulas for absorptive reflection data are to date unavailable in the literature. We will
treat this case. The reflection coefficient associated with a plane contrast in an-elastic or
an-acoustic medium parameters (e.g., White, 1965; Borcherdt, 1977; Kjartansson, 1979;
Krebes, 1984; Lam et al., 2004; de Hoop et al., 2005; Lines et al., 2008) contains character-
istic variations which could in principle be used to determine the relative changes in each
parameter at the point of contrast. Direct inverse scattering procedures, in the limit as a
set of absorptive volume scatterers combine to produce a specular reflector, in fact are seen
to make exclusive use of this kind of amplitude information (Innanen and Weglein, 2007;
Innanen and Lira, 2009). The variations in question are relatively small, and the literature
is divided on the ease of their detectability. Over a decade ago, absorption-specific reflec-
tion coefficient variations were reported to be un-observable as AVO/AVA behavior, when
synthetic viscoelastic data were examined at a single frequency over a suite of incidence
angles (Samec and Blangy, 1992). However, more recently, field measurements of reflec-
tion coefficients associated with certain low-Q fluid filled reservoirs have been described
as “strongly frequency dependent” (Odebeatu et al., 2006). The angle- and frequency-
dependence of dispersive reflection coefficients are coupled, hence we would seem to be
missing a clear and consistent picture. Still, the more recent investigations (Chapman et al.,
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2006; Ren et al., 2009) all come down at least implicitly on the “is detectable” side, suggest-
ing a trend in that direction, and indeed the earlier inconsistencies are plausibly explainable
as being due to particular choices of viscoelastic model, medium contrasts, etc., rather than
more fundamental issues.

Let us proceed assuming that variations in the reflection coefficient due to absorption
and dispersion of a target reflector have been unambiguously measured∗, and consider the
problem of separately estimating the influence of medium parameters (including Q) on
them. We will demonstrate that a simple, two-parameter dispersive reflection coefficient
may be expressed in terms of a variety of different plane-wave variables, expanded about
small parameter contrasts and incidence angles, and used to directly determine the target’s
properties.

ABSORPTIVE REFLECTION COEFFICIENTS

We will work in two spatial dimensions. Consider a wavefield P0, propagating in a
homogeneous, source-free, non-absorptive medium (medium 0) according to[

∇2 +
ω2

c20

]
P0(x, z, ω) = 0, (1)

and consider P1 propagating in an absorptive medium (medium 1) according to[
∇2 +

ω2

c21

(
1 +

F (ω)

Q1

)2
]
P1(x, z, ω) = 0, (2)

where (Aki and Richards, 2002)

F (ω) =
i

2
− 1

π
log

(
ω

ωr

)
, (3)

and ωr is an arbitrary reference frequency. Fourier transforming equations (1) and (2), we
have

k2
x + k2

z =
ω2

c20
, (4)

and

k2
x + k′2z =

ω2

c21

(
1 +

F (ω)

Q1

)2

, (5)

the first of which implies a range of possible relationships based on plane wave geometry,
e.g.:

kx =
ω

c0
sin θ,

kz =
ω

c0
cos θ,

(6)

∗And, indeed, that these variations have been correctly ascribed to absorptive reflectivity, and not to, say,
thin layering.
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where θ represents the plane wave angle measured away from the direction of positive z. If
P0 is incident upon a plane boundary separating medium 0 from medium 1, continuity of
the field (e.g., pressure) across the interface requires that there be a reflection coefficient

R =
kz − k′z
kz + k′z

, (7)

which, because of equations (3)–(5), we anticipate to be complex, frequency-dependent,
and expressive of the an-acoustic properties of the target medium in some hopefully useful
ways.

There is some room for choice in studying the angle-dependence of this coefficient in
terms of the quantities kx, kz, and ω. For instance, if frequency ω is a parameter,

Rω(θ) =
c1 cos θ − c0

[
1 +Q−1

1 F (ω)
]√

1− c21
c20

[
1 +Q−1

1 F (ω)
]−2

sin2 θ

c1 cos θ + c0
[
1 +Q−1

1 F (ω)
]√

1− c21
c20

[
1 +Q−1

1 F (ω)
]−2

sin2 θ
, (8)

whereas, if kx is a parameter,

Rkx(θ) =
c1 cos θ − c0

[
1 +Q−1

1 Fkx(θ)
]√

1− c21
c20

[
1 +Q−1

1 Fkx(θ)
]−2

sin2 θ

c1 cos θ + c0
[
1 +Q−1

1 Fkx(θ)
]√

1− c21
c20

[
1 +Q−1

1 Fkx(θ)
]−2

sin2 θ
, (9)

where

Fkx(θ) =
i

2
− 1

π
log

(
kxc0
ωr sin θ

)
, (10)

and if kz is a parameter,

Rkz(θ) =
c1 cos θ − c0

[
1 +Q−1

1 Fkz(θ)
]√

1− c21
c20

[
1 +Q−1

1 Fkz(θ)
]−2

sin2 θ

c1 cos θ + c0
[
1 +Q−1

1 Fkz(θ)
]√

1− c21
c20

[
1 +Q−1

1 Fkz(θ)
]−2

sin2 θ
, (11)

where

Fkz(θ) =
i

2
− 1

π
log

(
kzc0

ωr cos θ

)
. (12)

SERIES EXPANSIONS OF R

Examples of quantities embedded in R that are, from a geophysical point of view,
sometimes small, but not always, are angle of incidence, the relative change in wavespeed
(from c0 to c1), and the relative change in Q−1 (from 0 to Q−1

1 ). As measures of the latter
two quantities we define

α = 1− c20
c21
,

β =
1

Q1

,

(13)
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and as a measure of the first, we consider R as a function of sin2 θ. Depending on the
parametrization, the presence of dispersion can bring an additional level of complexity in
the θ dependence beyond the acoustic case. If ω is a parameter R expands as

Rω(θ) =

[(
1

4
α− 1

2
F (ω)β

)
+

(
1

8
α2 +

1

4
F 2(ω)β2

)
+ ...

] (
sin2 θ

)0
+

[(
1

4
α− 1

2
F (ω)β

)
+

(
1

4
α2 − 1

2
F (ω)αβ +

3

4
F 2(ω)β2

)
+ ...

] (
sin2 θ

)1
+

[(
1

4
α− 1

2
F (ω)β

)
+

(
5

16
α2 − 3

4
F (ω)αβ + F 2(ω)β2

)
+ ...

] (
sin2 θ

)2
+ ... .

(14)

If kz is a parameter, R instead has the form

R̃kz(θ) =

{[
1

4
α− 1

2
F̃kzβ

]
+

[
1

8
α2 +

1

4
F̃ 2
kzβ

2

]
+ ...

}(
sin2 θ

)0
+

{[
1

4
α−

(
1

2
F̃kz −

1

2π

)
β

]
+

[
1

4
α2 − 1

2
F̃kzαβ +

(
3

4
F̃ 2
kz −

1

4π

)
β2

]
+ ...

}(
sin2 θ

)1
+

{[
1

4
α−

(
1

2
F̃kz −

3

4π

)
β

]
+

[
5

16
α2 −

(
3

4
F̃kz −

1

4π

)
αβ

+

(
F̃ 2
kz −

7

8π
F̃kz +

1

16π2

)
β2

]
+ ...

}(
sin2 θ

)2
+ ...,

(15)

where

F̃kz =
i

2
− 1

π
log

(
kzc0
ωr

)
. (16)

Alternatively, if Rkz is expanded only in the angle variations that occur absent dispersion,
we have instead

Rkz(θ) =

[(
1

4
α− 1

2
Fkz(θ)β

)
+

(
1

8
α2 +

1

4
F 2
kz(θ)β

2

)
+ ...

] (
sin2 θ

)0
+

[(
1

4
α− 1

2
Fkz(θ)β

)
+

(
1

4
α2 − 1

2
Fkz(θ)αβ +

3

4
F 2
kz(θ)β

2

)
+ ...

] (
sin2 θ

)1
+

[(
1

4
α− 1

2
Fkz(θ)β

)
+

(
5

16
α2 − 3

4
Fkz(θ)αβ + F 2

kz(θ)β
2

)
+ ...

] (
sin2 θ

)2
+ ... .

(17)

THE FORWARD PROBLEM AND THE INVERSE PROBLEM

The forward problem we consider in this paper is the calculation of R over a range
of the variables kx, ω (i.e., the Fourier conjugates of offset and time respectively, which
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can then be transformed to kz, θ as desired), given α and β. The inverse problem is the
exact or approximate determination of α and β from values of R over a range of one of
these variables. In the abstract the inversion is referred to as AVA or AVF, to correspond
to the use of angle or frequency respectively as this variable. Any time in the following
examples there are two parameters to be solved for, at least two data will be required, and
they will be produced by varying the values of either frequency or angle and assuming that
R is available at these values. In any practical implementation of these formulas we would
naturally use as many data as we had, and fit the parameters with an appropriate regression.
Here for the sake of simplicity we will assume exact data, in which case, since there are at
most two parameters to solve for, we will use at most two data.

INVERSION OF R AT NORMAL INCIDENCE FOR A SINGLE PARAMETER
CONTRAST

We first consider the problem of a wave field impinging at normal incidence on a plane
contrast in Q by setting θ = 0 and α = 0. Choosing ω as a parameter, i.e., beginning with
equation (14), we then have Rω = Rω(θ)|θ=0:

Rω = −1

2
F (ω)β +

1

4
F 2(ω)β2 − ...

= −
1
2
F (ω)β

1 + 1
2
F (ω)β

.
(18)

Algebraic inverse solution

The inverse problem can be solved exactly given Rω at any one fixed frequency by
isolating β in equation (18), and that solution, if desired, can itself be expressed as a series:

β = − 2

F (ω)

Rω

1 +Rω

= − 2

F (ω)

(
Rω −R2

ω + ...
)
.

(19)

If β is small, we may be willing to make the first order approximation

β ≈ − 2

F (ω)
Rω, (20)

but in equation (19) we have a formula for β accurate to any desired order in the data Rω.

Inverse series

It is only rarely possible to solve exactly and non-linearly for a medium parameter in
terms of the reflection coefficient through simple algebra, as above, and the occasions when
it is will tend to be too simple to be interesting. An alternative approach that continues to
work as the expressions for the data become increasingly complicated, instead involves
forming an inverse series for the desired quantity:

β = β1 + β2 + ..., (21)
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where βn is defined to be the component of β that is n’th order in Rω, substituting it into
equation (18):

Rω = −1

2
F (ω)β1 −

1

2
F (ω)β2 +

1

4
F 2(ω)β2

1 + ..., (22)

and equating like orders, from which we determine

β1 = − 2

F (ω)
Rω, (23)

at first order,

β2 =
1

2
F (ω)β2

1 =
2

F (ω)
R2
ω, (24)

at second order, etc. The same inverse formula determined algebraically in equation (19) is
recovered. At this level of complexity (one parameter, normal incidence) it is not clear that
either approach is preferable, but that will change.

INVERSION OF R AT NORMAL INCIDENCE FOR A TWO PARAMETER
CONTRAST

If again a reflection coefficient (expressed with ω as a parameter) due to a normally
incident field was measured, but this time with α 6= 0 and β 6= 0, i.e., having the form

Rω =

(
1

4
α− 1

2
F (ω)β

)
+

(
1

8
α2 +

1

4
F 2(ω)β2

)
+ ..., (25)

the wrinkle for the inverse problem is that simultaneous variations in α and β now account
for the amplitude content of Rω.

Algebraic inverse solution

Truncating equation (25) at first order:

Rω ≈
1

4
α− 1

2
F (ω)β, (26)

we notice that within this approximation the frequency dependence of Rω is due solely to
variations in β. Hence if we take R at two distinct frequencies, Rω1 and Rω2 , and subtract
them, by equation (26) we have isolated β:

β ≈ 2
Rω1 −Rω2

F (ω2)− F (ω1)
. (27)

Likewise we may separate out the R behavior due to α:

α ≈ 4
Rω1F (ω2)−Rω2F (ω1)

F (ω2)− F (ω1)
. (28)
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Because of the fortuitous lack of an αβ cross-term at second order in equation (25), this
scheme also works if we truncate the reflection coefficient series in equation (25) at second
order:

Rω ≈
1

4
α− 1

2
F (ω)β +

1

8
α2 +

1

4
F 2(ω)β2. (29)

Again selecting two frequencies and extracting from the data Rω1 and Rω2 , we have, to
replace the first-order inverse formula in equation (27), the second-order inverse formula

β ≈
[F (ω1)− F (ω2)]−

√
[F (ω1)− F (ω2)]2 − 4[F 2(ω1)− F 2(ω2)](Rω2 −Rω1)

[F 2(ω1)− F 2(ω2)]
; (30)

with this value of β in hand, from equation (29) we may then solve for α, replacing the first
order inverse formula in equation (28) with the second-order inverse formula:

α ≈ −1 +

√
1 + 8

(
Rω +

1

2
F (ω)β − 1

4
F 2(ω)β2

)
, (31)

in principle using any desired frequency component Rω and its corresponding F (ω).

Inverse series

Answers with the same degree of accuracy can be produced by again forming inverse
series α = α1 + α2 + ... and β = β1 + β2 + ..., substituting them into equation (25):

Rω =
1

4
α1 +

1

4
α2 −

1

2
F (ω)β1 −

1

2
F (ω)β2 +

1

8
α2

1 +
1

4
F 2(ω)β2

1 + ..., (32)

and equating like orders. Truncating the inverse series at first order, we obtain

α ≈ α1 = 4
Rω1F (ω2)−Rω2F (ω1)

F (ω2)− F (ω1)
,

β ≈ β1 = 2
Rω1 −Rω2

F (ω2)− F (ω1)
,

(33)

i.e., the same result as was derived algebraically in equations (27) and (28). Truncating at
second order, we instead obtain

α ≈ α1 + α2 = 4

(
Rω1 +R

(2)
ω1

)
F (ω2)−

(
Rω2 +R

(2)
ω2

)
F (ω1)

F (ω2)− F (ω1)
,

β ≈ β1 + β2 = 2

(
Rω1 +R

(2)
ω1

)
−
(
Rω2 +R

(2)
ω2

)
F (ω2)− F (ω1)

,

(34)

where

R(2)
ω1
≡ −1

8
α2

1 −
1

4
F 2(ω1)β

2
1 ,

R(2)
ω2
≡ −1

8
α2

1 −
1

4
F 2(ω2)β

2
1 ,

(35)
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or, in more compact form:

α ≈ α1 −
1

2
α2

1 − β2
1

(
F 2(ω1)F (ω2)− F 2(ω2)F (ω1)

F (ω2)− F (ω1)

)
,

β ≈ β1 +
1

2
[F (ω2) + F (ω1)]β

2
1 .

(36)

INVERSION OF R AT OBLIQUE INCIDENCE FOR A TWO PARAMETER
CONTRAST

So far we have made explicit use of the frequency dependence of R to separately de-
termine c and Q; we therefore refer to what we have done as linear and/or non-linear AVF
inversion. As we will see next, variations in α and β may alternatively be determined by
using the angle dependence of the reflection coefficient, making implicit rather than explicit
use of its frequency dependence. This then would be a form of AVA inversion, tuned to the
particular problem of absorption. For those familiar with the work of Dasgupta and Clark
(1998), this may sound like old news, but we emphasize that their QVO method is based on
attenuation along increasing path-lengths of a wave in an absorptive medium above a re-
flector. Here, we use the reflection coefficient, that is, we make use of information coming
from the reflector itself: in point of fact, there is no Q in the layer overlying our reflector.

Algebraic inversion

Choosing kz as a parameter, we truncate the series for R in equation (17) at first order
in α, β, and sin2 θ:

Rkz(θ) ≈
(

1

4
α− 1

2
Fkz(θ)β

)(
1 + sin2 θ

)
. (37)

Dividing through by 1 + sin2 θ, we have, still to first order in sin2 θ,

Rkz(θ) cos2 θ ≈ 1

4
α− 1

2
Fkz(θ)β, (38)

so α and β may be separated by choosing two angles of incidence θ1 and θ2:

β ≈ 2
Rkz(θ1) cos2 θ1 −Rkz(θ2) cos2 θ2

Fkz(θ2)− Fkz(θ1)
, (39)

and

α ≈ 4
Rkz(θ1) cos2 θ1Fkz(θ2)−Rkz(θ2) cos2 θ2Fkz(θ1)

Fkz(θ2)− Fkz(θ1)
. (40)

Because Rkz(θ) has a non-zero term in αβ at first order in sin2 θ, the algebraic determi-
nation of higher order corrections for α and β using the angle dependence of R, while
probably not impossible, will likely try the interested researcher’s patience.
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Inverse series

In contrast, it is reasonably straightforward to construct non-linear formulas for α and
β using the inverse series approach. Again forming α = α1 + α2 + ... and β = β1 +
β2 + ..., substituting them into equation (17) and equating like orders, we recover a similar
expression for the linearly determined α1 and β1:

β1 = 2
Rkz(θ1) cos2 θ1 −Rkz(θ2) cos2 θ2

Fkz(θ2)− Fkz(θ1)
, (41)

and

α1 = 4
Rkz(θ1) cos2 θ1Fkz(θ2)−Rkz(θ2) cos2 θ2Fkz(θ1)

Fkz(θ2)− Fkz(θ1)
. (42)

However, we may continue straightforwardly to higher order. For instance, at second order
we have

α ≈ α1 + α2 = 4
[Rkz(θ1) + R̃kz(θ1)]Fkz(θ2) cos2 θ1 − [Rkz(θ2) + R̃kz(θ2)]Fkz(θ1) cos2 θ2

Fkz(θ2)− Fkz(θ1)
,

β ≈ β1 + β2 = 2
[Rkz(θ1) + R̃kz(θ1)] cos2 θ1 − [Rkz(θ2) + R̃kz(θ2)] cos2 θ2

Fkz(θ2)− Fkz(θ1)
(43)

where

R̃kz(θ) = − 1

cos2 θ

(
1

4
α2

1 +
1

2
F 2
kz(θ)β

2
1

)
−
(

1

2
α1 + Fkz(θ)β1

)2

sin2 θ. (44)

NUMERIC EXAMPLE

To provide some numerical illustration of these ideas, we consider the normal incidence
two parameter case, i.e., we implement the formulas derived in equations (33)–(36). The
real part of the reflection coefficient R associated with an acoustic medium (c0 =1500m/s)
overlying an absorptive medium (c1 =1800m/s, Q1 =10) is illustrated in Figure 1, with,
for comparison, the associated acoustic reflection coefficient (i.e., with 1/Q1 =0). The
variation with frequency of the reflection coefficient permits the two parameters to be in-
dependently determined.

In Figure 2 we illustrate the use of these formulas to invert for c1 andQ1. Target medium
properties are determined using two values of the absorptive R depicted in Figure 1, one
fixed at 1 Hz, the other taking on values ranging from 2-100 Hz. Roughly 100 estimates
are calculated, and plotted as a function of this second frequency value. In Figure 2a the
target Q value (in gold) is recovered to first order using equation (33). This is in effect
the inverse Born approximation of Q1. In Figure 2b, the target Q value is recovered to
second order (i.e., one order “beyond Born”) using equation (36). In Figure 2c, the target
wavespeed value (in blue) is recovered to first order using equation (33). And, in Figure
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2d, the target wavespeed value is recovered, accurate to second order, using equation (36).
In addition to the bulk tendency of the inverted properties to converge towards their exact
values, with a significant increase in accuracy from first to second order, it is worth noting
that the spurious variation of the inversion result with experimental variables (in this case
frequency), a characteristic of the inverse Born approximation for large contrast targets,
diminishes as order increases.

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

Freq. (Hz)

ABSORPTIVE

ACOUSTIC

FIG. 1. Reflection coefficients as a function of frequency.

CONCLUSIONS

Beyond demonstrating how inverse series solutions are found, in concluding we might
emphasize some benefits of this style of inversion. We have seen that up to certain lev-
els of mathematical complexity†, the direct solution for wavespeed c and quality factor Q
contrasts in terms of the reflection coefficient can be carried out algebraically or with a
series; but, at some point, the former becomes unwieldy, and ultimately intractable. The
power of inverse scattering series methods is that we may keep piling complexity upon
complexity, including propagation effects, transmission losses, multidimensionality of the
perturbation, and in principle any number of medium parameters, and the approach (defin-
ing an inverse series to be substituted into the forward problem and solved for order by
order) keeps working.

The inverse series results and their derivations in this paper, in addition to providing
new and potentially useful formulas for inversion, are meant to act as a conceptual intro-
duction to inverse scattering series methods. So, we also emphasize that the former (with a
few exceptions) represent a special case of the latter, and capture much of their flavour. The
formula in equation (44), for instance, is reproduced exactly by linearizing the full absorp-
tive inverse scattering problem with the constraint that the solution has to be a Heaviside

†Complex, meaning, for instance, large versus small number of parameters undergoing contrasts, high
versus low order of non-linearity, or large versus small angles of incidence
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FIG. 2. Target medium properties recovered over a range of frequency pairs: (a) Q1, to first order,
(b) Q1, to second order, (c) c1, to first order, (d) c1, to second order. Exact property values are
displayed in black.

function (Innanen and Weglein, 2007, equation 57).

In spite of the fact that the inverse scattering series has been around for a long time
(Moses, 1956; Razavy, 1975; Weglein et al., 1981; Stolt and Jacobs, 1980; Weglein et al.,
2003), the approach taken in this paper does have some new and unusual features beyond
its application to absorptive problems. In fact, it is an example of a recently-suggested al-
teration of the standard program of inverse scattering. Here, we alter the forward scattering
problem to approximate either a simple experiment, or only a certain type of event, before
any inverse steps are taken (Innanen, 2008); then the altered forward series is inverted, with
perturbations being reconstructed order-by-order in what are now very differently defined
data. Although the final formulas and algorithms that arise can all be derived by analyzing
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and breaking up the full inverse scattering series, it may be that confining all manipulations
and approximations to the forward part of the problem is advantageous, since the forward
scattering problem is more straightforwardly linked to wave physics than its inverse coun-
terpart.
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