
Overcoming computational cost problems

 CREWES Research Report — Volume 21 (2009) 1

Overcoming computational cost problems of reverse-time
migration

Zaiming Jiang, Kayla Bonham, John C. Bancroft, and Laurence R. Lines

ABSTRACT

Prestack reverse-time migration is computationally expensive. Program run times are

long, in terms of the total number of CPU cycles, and it requires large amounts of hard

disk free space. To accelerate computing, we do parallel processing using Intel Threading

Building Blocks (TBB) and multi-core computers, for both the forward-time modelling

and reverse-time migration phases of the computation. To solve the problem of limited

free disk space, we use a technique that may seem counter-intuitive: the forward

modelling phase is done twice instead of once. Two other enduring problems are

described at the end of the paper: the requirement for large working memory, and limited

access speeds of mass storage (hard disk) relative to the speed of computation.

INTRODUCTION

Elastic wave modelling based on finite-difference methods is time consuming. For

example, it took Martin (2004) a total of 70,000 hours, or approximately 8 CPU years to

do elastic wave modelling using the Marmousi2 model.

Prestack reverse-time migration needs even more computational time. Gavrilov at al.

(2000) have already modified parallel computing to accelerate reverse-time migration.

They used the message-passing interface (MPI) to develop a “distributed parallel

implementation” and carried out the computing on a cluster computer with many

processors.

This report describes another method of parallel computing, developing software using

Intel TBB, a C++ template library introduced in 2006 for writing software programs that

take advantage of multi-core processors, and carrying out computation on multi-core

processors, which have been widely used both in cluster computers and personal

computers ever since Intel developed its first dual-core processor in 2005. As pointed out

by Lines, Castagna, and Treitel (2001), the “advances in computer hardware have had a

big impact on how we operate.” Multi-core processor parallel computing will become

more and more common.

Besides CPU time, disk space is another important computational resource when

doing reverse-time migration. To solve the problem of limited free disk space, we use a

technique that may seem counter-intuitive: the forward modelling phase is done twice

instead of once.

This report also addresses two other computational problems: the requirement for

large working memory and limited access speeds of mass storage (hard disk) relative to

the speed of computation.

Jiang et al.

2 CREWES Research Report — Volume 21 (2009)

COMPUTATIONAL TIME

Prestack reverse-time migration is more computationally intensive than seismic

modelling since it involves not only forward modelling, but also reverse-time

extrapolation and imaging. If we do reverse-time migration on the Marmousi2 model, for

which the number of numerical nodes in the x direction is 13601 and the number in the

z direction is 2801, the total time will be at least doubled, i.e., up to 16 CPU years.

Our solution is to use parallel processing to accelerate the computation. The

implementation of parallelization was first done on a dual-core PC, and then the

parallelized code was ported onto an 8-CPU shared memory computer, available to us as

a single node of Gilgamesh, CREWES‟ new cluster computer.

Hardware for parallel computing: multi-core computers

Our first parallel computing experiment was carried out on a dual-core PC. This is a

Lenovo R60e notebook computer, which has an Intel core 2 CPU (1.83 GHz) and 3 GB

memory. The Intel Core 2 CPU has two CPU cores, which can be deployed to do parallel

computing. The logical architecture of the computer is shown schematically in Figure 1.

 CPU core CPU core

IO bus

3GB

memory

60GB

hard disk

FIG. 1. The logical architecture of the dual-core Lenovo R60e notebook computer.

One of Gilgamesh‟s 19 nodes is used to perform our second set of experiments in

parallel processing. Each node of Gilgamesh is based on the Super Micro X7DVL-E

system, with two Intel Harpertown 2.66 GHz quad-core processors. The logical

architecture of the Gilgamesh node is similar to that of the dual-core PC, except that the

number of cores is 8 instead of 2, the RAM memory size is 16 GB instead of 3 GB, and

the total space of 2 hard disks is 320 GB (Bonham et al. 2008). The logical architecture

of Gilgamesh is shown schematically in Figure 2.

Software: Intel TBB

Intel® Threading Building Blocks (TBB) is used to parallelize the modelling and

reverse-time migration application. Intel TBB is a C++ template library for writing

software programs that take advantage of multi-core processors. There are two builds of

it: commercial build and open source build. According to Intel‟s website, “these are built

from the same source code, the only real difference is the license and support offering”.

What we use is the open source build. The most recent version is 2.2; what we use is

version 2.1, which was released in June 2008.

Overcoming computational cost problems

 CREWES Research Report — Volume 21 (2009) 3

Network

core core

core core

core core

core core

Node 19

16GB

memory

hard disk hard disk

IO bus

core core

core core

core core

core core

Node 03

16GB

memory

hard disk hard disk

IO bus

core core

core core

core core

core core

Node 02

16GB

memory

hard disk hard disk

IO bus

core core

core core

core core

core core

Node 01

16GB

memory

hard disk hard disk

IO bus

19 nodes

FIG. 2. The logical architecture of Gilgamesh. There are 19 computer nodes connected by a high
speed network. There are 8 CPU cores for each node. The total hard disk space is 320 GB for
each node except for node 01.

Environment variables need to be registered before Intel TBB can be used. Practically,

the Intel TBB documentation does not cover all the installation cases over different

operation systems, and for completeness we list our practices in an appendix.

Software design using Intel TBB

Once the Intel TBB package is installed, the modelling and migration programs, which

are written in C++, are parallelized using the header files and library provided by the

TBB package.

The simplest form of parallelization is a loop of the C++ template function

tbb::parallel_for. It looks like a “for” loop in C/C++, but involves the definition of an

iteration space. The tbb::parallel_for compares the iteration space size and the available

CPU cores, and then breaks down the iteration space into chunks. Then the function

tbb::parallel_for runs each chunk on a separate thread.

For the prestack reverse-time migration, the intuitive choice of iteration space is by

shot numbers. In the “main” function of our C++ code, the parallel_for is called as

follows:

 parallel_for(

 blocked_range<int>(0,nSrcXNumb),

 CModelingAndRTM(param),

Jiang et al.

4 CREWES Research Report — Volume 21 (2009)

 auto_partitioner());

where „blocked_range‟ indicates what the operation object or iteration space is;

„CModelingAndRTM‟ is a C++ class which contains the code for modelling and reverse-

time migration and specifies how the operation is done.

Efficiency of parallelization

The efficiency of parallelization was first tested running the modelling and reverse-

time migration program on the dual-core PC using a simplified model which contains 872

nodes in the x direction and 366 nodes in the z direction. For 10 shots, the parallelized

program employs the dual-core CPU, and the total computation time is reduced by 44.7%

(Figure 3).

We then tested a modelling program on a Gilgamesh node with eight CPU cores. The

subsurface model contains 3000 nodes in the x direction and 800 nodes in the z direction.

For 16 shots, the parallelized program employs the eight CPU cores and the total

computation time is reduced by 75.3% (Figure 3).

1190

901

294

1628

0

200

400

600

800

1000

1200

1400

1600

1800

10 shots modelling and migration

on Dual-core PC

16 shots modelling on a

Gilgamesh node with eight cores

C
o

m
p

u
ti

n
g

 t
im

e
 (

s
e
c
o

n
d

) sequential parallel

FIG. 3. Computational costs of sequential and parallel programs on a Dual-core PC, and a
Gilgamesh node with eight CPU cores.

HARD DISK FREE SPACE

The problem of limited hard disk free space arises when we try to calculate the source-

normalized crosscorrelation imaging condition. The imaging condition is

time

time

tzxS

tzxRtzxS
zximage

),,(

),,(),,(
),(

2
, (1)

where),,(tzxS and),,(tzxR are, respectively, the source wavefield produced by modelling

and the receiver wavefield produced by reverse-time extrapolation. Imagine that we have

decided that we should compute the forward modelling by time steps t = [1, 2, 3, …, T].

When we reach the last time T, we begin the reverse-time migration phase by time steps

t = [T, T-1, T-2, …, 1]. At each step t in the reverse-time calculation, the imaging

condition requires crosscorrelation with the corresponding t in the forward time

Overcoming computational cost problems

 CREWES Research Report — Volume 21 (2009) 5

calculation. This means stepping backward through the snapshots of the wavefield

representation, which had been previously computed in the forward direction.

Unfortunately, the disk space required to store every step in the forward calculation

would be prohibitive.

Take the size-shrunk Marmousi, which has a size of 7982453 nodes, for example.

When it is necessarily padded on both sides and on the bottom, the size is 10484452 .

To store the vertical component of one snapshot, we need at least 18,644,976 bytes, i.e.,

approximately 18 MB. For the 9599 time steps to model one shot, we need free disk

space of about 170,682 MB. To fully use the 8 cores of a Gilgamesh node, we need free

disk space of 1,365,456 MB, which is far larger than the local hard disk total space. If

both vertical and horizontal components of the wavefield are needed, the free disk space

needed is doubled.

One solution to this problem can be to use CPU time, doing modelling twice instead of

once, to keep the disk space requirements within available limits. During the first forward

modelling phase, instead of saving all the wavefield snapshots (subsurface particle

horizontal and vertical velocities) for each time t = [0, 1, 2, 3, …, 9599], we save the

wavefield state (subsurface particle velocities and stresses) for only every 1000
th

 one, i.e.,

for t = [1000, 2000, 3000, …, 9000]. When we work backwards in the reverse-time

migration for t = [9599, 9598, 9597, …, 1, 0], we can re-model each block of 1000 from

the stored wavefield state at the time it is needed for the crosscorrelation. For example,

we would re-compute snapshots for time t = [3001, 3002, 3003, …, 3999] from the

stored wavefield state at time t = 3000. Thus, without storing all the model snapshots at

every time t onto disk, the imaging condition can be implemented, although the

modelling has to be done twice (Figure 4).

Even though the modelling is done twice, the computation is still accelerated. Without

this re-modelling strategy, the modelling and migration experiment over the size-shrunk

Marmousi model, which is padded to a 10484452 grid, could only be done serially on

the Gilgamesh node storing only one component of the snapshots because of the limited

local disk space. The computation time was 12048 seconds, i.e., approximately 3.35

hours for one shot. To compute 32 shots shot-by-shot, it would take 385536 seconds, i.e.,

107.09 hours. Now, with this re-modelling strategy, all 8 CPU cores are made use of at

the same time, and although the modelling of each shot is done twice, the computation

time is still reduced. The parallel computation time is 143757 seconds, i.e.,

approximately 40 hours for 32 shots. Thus the computation time is reduced by more than

62.7%.

OTHER COMPUTATIONAL COST PROBLEMS

There also exist some other problems in addition to the computing time and free disk

space challenges. Here we describe two of them: memory requirements and the

bottleneck of hard disk drive I/O speed.

Jiang et al.

6 CREWES Research Report — Volume 21 (2009)

3000

3001

3002

3998

3999

2999

0

4000

9599

2999

3999

3998

3002

3001

3000

Cross-

correlation
3999

Cross-

correlation
3998

Cross-

correlation
3002

Cross-

correlation
3001

Cross-

correlation
3000

0

9599

4000

3000
Forward modeling at time

3000, first pass

3001
Forward modeling at time

3001, second pass

Data file with particle

velocities & stresses

Data file with particle

velocities

3999
Reverse-time extrapolation

at time 3999

Program running direction

Write data file to disk

Read data file, then the file

is removed from disk

Forward Modelling

First pass Second pass

Reverse-time

extrapolation

FIG. 4. Do modelling twice instead of once, to keep the disk space requirements within available
limits.

Reverse-time migration needs a large amount of memory. Take for example the well-

known elastic Marmousi2 model. The model has a 280113601 grid. Thus, there are

38,096,401 nodes in all. For each node, 4 bytes are needed to store data of type „float‟,

which means 152,385,604 bytes for the matrix. The elastic model has 3 parameter

Overcoming computational cost problems

 CREWES Research Report — Volume 21 (2009) 7

matrices: densities, P-wave velocities, and S-wave velocities, which are used in a non-

staggered grid finite-difference method, or densities and Lamé coefficients, which are

used in a staggered-grid scheme. So, to load the model, 457,156,812 bytes or

approximately 436 MB of memory are needed. To perform finite-differencing, 5 more

parameter matrices (2 particle velocities and 3 stresses in the case of a staggered-grid

scheme) of the same size as the grid need to be loaded in memory for each of 2

successive time steps. So the memory needed for finite-differencing is 1,523,856,040

bytes, i.e., more than 1,453 MB. Thus, the total memory requirement for forward

modelling or reverse-time extrapolation is at least 1,981,012,852 bytes, i.e., more than

1,889 MB.

Hard disk drive input / output speed is sometimes the performance bottleneck of

parallel programs which are based on multi-core processing. There are two reasons why

hard disks can be the bottleneck. First, hard disk I/O speed is much slower than memory

I/O. Secondly, the eight CPU cores in one Gilgamesh node compete with each other for

writing to and reading from the two local disks. When there is a lot of disk I/O, the whole

node will be slowed down. In fact, we actually observed this phenomenon: when all the

eight CPU cores are computing without disk I/O, the percentage of CPU usage shown by

the utility „top‟, is usually 800 percent or close to this number, i.e., all the eight cores are

fully made use of; when the eight CPU cores need to do disk I/O, the percentage

sometimes can be as low as 200, i.e., six of the eight CPU cores are waiting for the disks

at that moment.

If we must process large-size seismic data, or we must do a lot of disk I/O for some

other reasons, we would have to learn to play some new tricks to overcome the

challenges.

CONCLUSIONS

Modelling and reverse-time migration based on finite-difference methods are

compute-intensive. The challenges are the long computational time and the need of large

hard disk free space. To accelerate computation, parallel computing is implemented using

Intel TBB and multi-core computers; to overcome disk space limitations, the modelling

part of the reverse-time migration is done twice, instead of once, in “chunks” whose size

is optimized to avoid exceeding the available disk space.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of CREWES sponsor companies and

various CREWES staff and students.

REFERENCES

Bonham, K., Hall, K.W., and Ferguson R.J., 2008, The epic of Gilgamesh: CREWES' new cluster

computer, CREWES research report, 20, 70.1-70.12.

Gavrilov, D., Lines, L., Bland, H., Kocurko, A., 2000, 3-D depth migration: parallel processing and

migration movies, The Leading Edge, 19, 1282-1284.

Lines, L.R., Castagna, J.P., and Treitel, S., 2001, Geophysics in the new millennium, Geophysics, 66, 14.

Martin, G.S., 2004, The marmousi2 model, elastic synthetic data, and an analysis of imaging and AVO in a

structurally complex environment, MSc thesis, University of Houston.

Jiang et al.

8 CREWES Research Report — Volume 21 (2009)

APPENDIX

Before Intel TBB can be used, environment variables need to be registered to the

operating system. Unfortunately, the Intel TBB documentation does not cover all the

environment variable registration cases over different operating systems. We list our

practices as below.

On our PC, which has Windows XP and Microsoft visual C++ 2008 Express Edition

installed, environment variables are manually set, since, unfortunately, the Intel TBB

plug-in for Microsoft Studio did not work. The manual way of registering environment

variables is: right click 'My Computer' --> Properties --> Advanced --> Environment

variables. On the dialog 'Environment variables', set values for the variables 'include', 'lib',

and 'path'. Suppose that the Intel TBB directory 'tbb21_20080605oss' is copied to

'C:\Program Files\Intel\', and suppose that the CPU has a 32-bit Intel Architecture, then

add 'C:\Program Files\Intel\tbb21_20080605oss\include' to the 'include' variable,

'C:\Program Files\Intel\tbb21_20080605oss\ia32\vc9\lib' to the 'lib' variable, and

'C:\Program Files\Intel\tbb21_20080605oss\ia32\vc9\bin' to the 'path' variable.

When Fedora 9 is used on the PC, the following lines are added to the bash shell start-

up file:

 TBB21_INSTALL_DIR=$HOME/tbb21_20080605oss

 TBB_ARCH_PLATFORM=ia32/cc4.1.0_libc2.4_kernel2.6.16.21

 LD_LIBRARY_PATH="${TBB21_INSTALL_DIR}/${TBB_ARCH_PLATFORM}/lib"

 export LD_LIBRARY_PATH

 LIBRARY_PATH="${TBB21_INSTALL_DIR}/${TBB_ARCH_PLATFORM}/lib"

 export LIBRARY_PATH

 CPATH=$HOME/tbb21_20080605oss/include

 export CPATH

where „$HOME/tbb21_20080605oss‟ is the directory of the Intel TBB package.

To use Intel TBB on Gilgamesh, on which the operation system is CentOS, a „.cshrc‟

start-up file is created, which contains:

 setenv TBB21_INSTALL_DIR $HOME/tbb21_20080605oss

 setenv TBB_ARCH_PLATFORM em64t/cc4.1.0_libc2.4_kernel2.6.16.21

 setenv LD_LIBRARY_PATH $TBB21_INSTALL_DIR/$TBB_ARCH_PLATFORM/lib

 setenv LIBRARY_PATH $TBB21_INSTALL_DIR/$TBB_ARCH_PLATFORM/lib

 setenv CPATH $HOME/tbb21_20080605oss/include

Overcoming computational cost problems

 CREWES Research Report — Volume 21 (2009) 9

where „$HOME/tbb21_20080605oss‟ is the directory of the Intel TBB package.

