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ABSTRACT 

Prestack reverse-time migration is computationally expensive. Program run times are 

long, in terms of the total number of CPU cycles, and it requires large amounts of hard 

disk free space. To accelerate computing, we do parallel processing using Intel Threading 

Building Blocks (TBB) and multi-core computers, for both the forward-time modelling 

and reverse-time migration phases of the computation. To solve the problem of limited 

free disk space, we use a technique that may seem counter-intuitive: the forward 

modelling phase is done twice instead of once. Two other enduring problems are 

described at the end of the paper: the requirement for large working memory, and limited 

access speeds of mass storage (hard disk) relative to the speed of computation. 

INTRODUCTION 

Elastic wave modelling based on finite-difference methods is time consuming. For 

example, it took Martin (2004) a total of 70,000 hours, or approximately 8 CPU years to 

do elastic wave modelling using the Marmousi2 model. 

Prestack reverse-time migration needs even more computational time. Gavrilov at al. 

(2000) have already modified parallel computing to accelerate reverse-time migration. 

They used the message-passing interface (MPI) to develop a “distributed parallel 

implementation” and carried out the computing on a cluster computer with many 

processors. 

This report describes another method of parallel computing, developing software using 

Intel TBB, a C++ template library introduced in 2006 for writing software programs that 

take advantage of multi-core processors, and carrying out computation on multi-core 

processors, which have been widely used both in cluster computers and personal 

computers ever since Intel developed its first dual-core processor in 2005. As pointed out 

by Lines, Castagna, and Treitel (2001), the “advances in computer hardware have had a 

big impact on how we operate.” Multi-core processor parallel computing will become 

more and more common. 

Besides CPU time, disk space is another important computational resource when 

doing reverse-time migration. To solve the problem of limited free disk space, we use a 

technique that may seem counter-intuitive: the forward modelling phase is done twice 

instead of once. 

This report also addresses two other computational problems: the requirement for 

large working memory and limited access speeds of mass storage (hard disk) relative to 

the speed of computation. 
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COMPUTATIONAL TIME 

Prestack reverse-time migration is more computationally intensive than seismic 

modelling since it involves not only forward modelling, but also reverse-time 

extrapolation and imaging. If we do reverse-time migration on the Marmousi2 model, for 

which the number of numerical nodes in the x direction is 13601 and the number in the 

z direction is 2801, the total time will be at least doubled, i.e., up to 16 CPU years. 

Our solution is to use parallel processing to accelerate the computation. The 

implementation of parallelization was first done on a dual-core PC, and then the 

parallelized code was ported onto an 8-CPU shared memory computer, available to us as 

a single node of Gilgamesh, CREWES‟ new cluster computer. 

Hardware for parallel computing: multi-core computers 

Our first parallel computing experiment was carried out on a dual-core PC. This is a 

Lenovo R60e notebook computer, which has an Intel core 2 CPU (1.83 GHz) and 3 GB 

memory. The Intel Core 2 CPU has two CPU cores, which can be deployed to do parallel 

computing. The logical architecture of the computer is shown schematically in Figure 1. 
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FIG. 1. The logical architecture of the dual-core Lenovo R60e notebook computer. 

One of Gilgamesh‟s 19 nodes is used to perform our second set of experiments in 

parallel processing.  Each node of Gilgamesh is based on the Super Micro X7DVL-E 

system, with two Intel Harpertown 2.66 GHz quad-core processors. The logical 

architecture of the Gilgamesh node is similar to that of the dual-core PC, except that the 

number of cores is 8 instead of 2, the RAM memory size is 16 GB instead of 3 GB, and 

the total space of 2 hard disks is 320 GB (Bonham et al. 2008). The logical architecture 

of Gilgamesh is shown schematically in Figure 2. 

Software: Intel TBB 

Intel® Threading Building Blocks (TBB) is used to parallelize the modelling and 

reverse-time migration application. Intel TBB is a C++ template library for writing 

software programs that take advantage of multi-core processors. There are two builds of 

it: commercial build and open source build. According to Intel‟s website, “these are built 

from the same source code, the only real difference is the license and support offering”. 

What we use is the open source build. The most recent version is 2.2; what we use is 

version 2.1, which was released in June 2008. 
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FIG. 2. The logical architecture of Gilgamesh. There are 19 computer nodes connected by a high 
speed network. There are 8 CPU cores for each node. The total hard disk space is 320 GB for 
each node except for node 01. 

Environment variables need to be registered before Intel TBB can be used. Practically, 

the Intel TBB documentation does not cover all the installation cases over different 

operation systems, and for completeness we list our practices in an appendix. 

Software design using Intel TBB 

Once the Intel TBB package is installed, the modelling and migration programs, which 

are written in C++, are parallelized using the header files and library provided by the 

TBB package. 

The simplest form of parallelization is a loop of the C++ template function 

tbb::parallel_for. It looks like a “for” loop in C/C++, but involves the definition of an 

iteration space. The tbb::parallel_for compares the iteration space size and the available 

CPU cores, and then breaks down the iteration space into chunks. Then the function 

tbb::parallel_for runs each chunk on a separate thread. 

For the prestack reverse-time migration, the intuitive choice of iteration space is by 

shot numbers. In the “main” function of our C++ code, the parallel_for is called as 

follows: 

 parallel_for( 

  blocked_range<int>(0,nSrcXNumb), 

  CModelingAndRTM(param), 
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  auto_partitioner()); 

where  „blocked_range‟ indicates what the operation object or iteration space is; 

„CModelingAndRTM‟ is a C++ class which contains the code for modelling and reverse-

time migration and specifies how the operation is done. 

Efficiency of parallelization 

The efficiency of parallelization was first tested running the modelling and reverse-

time migration program on the dual-core PC using a simplified model which contains 872 

nodes in the x direction and 366 nodes in the z direction. For 10 shots, the parallelized 

program employs the dual-core CPU, and the total computation time is reduced by 44.7% 

(Figure 3). 

We then tested a modelling program on a Gilgamesh node with eight CPU cores. The 

subsurface model contains 3000 nodes in the x direction and 800 nodes in the z direction. 

For 16 shots, the parallelized program employs the eight CPU cores and the total 

computation time is reduced by 75.3% (Figure 3). 
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FIG. 3. Computational costs of sequential and parallel programs on a Dual-core PC, and a 
Gilgamesh node with eight CPU cores. 

HARD DISK FREE SPACE 

The problem of limited hard disk free space arises when we try to calculate the source-

normalized crosscorrelation imaging condition.  The imaging condition is 
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where ),,( tzxS and ),,( tzxR are, respectively, the source wavefield produced by modelling 

and the receiver wavefield produced by reverse-time extrapolation. Imagine that we have 

decided that we should compute the forward modelling by time steps t  = [1, 2, 3, …, T].  

When we reach the last time T, we begin the reverse-time migration phase by time steps 

t  = [T, T-1, T-2, …, 1]. At each step t in the reverse-time calculation, the imaging 

condition requires crosscorrelation with the corresponding t  in the forward time 
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calculation.  This means stepping backward through the snapshots of the wavefield 

representation, which had been previously computed in the forward direction. 

Unfortunately, the disk space required to store every step in the forward calculation 

would be prohibitive. 

Take the size-shrunk Marmousi, which has a size of 7982453  nodes, for example. 

When it is necessarily padded on both sides and on the bottom, the size is 10484452 . 

To store the vertical component of one snapshot, we need at least 18,644,976 bytes, i.e., 

approximately 18 MB. For the 9599 time steps to model one shot, we need free disk 

space of about 170,682 MB. To fully use the 8 cores of a Gilgamesh node, we need free 

disk space of 1,365,456 MB, which is far larger than the local hard disk total space. If 

both vertical and horizontal components of the wavefield are needed, the free disk space 

needed is doubled. 

One solution to this problem can be to use CPU time, doing modelling twice instead of 

once, to keep the disk space requirements within available limits. During the first forward 

modelling phase, instead of saving all the wavefield snapshots (subsurface particle 

horizontal and vertical velocities) for each time  t  = [0, 1, 2, 3, …, 9599], we save the 

wavefield state (subsurface particle velocities and stresses) for only every 1000
th

 one, i.e., 

for t  = [1000, 2000, 3000, …, 9000]. When we work backwards in the reverse-time 

migration for t  = [9599, 9598, 9597, …, 1, 0], we can re-model each block of 1000 from 

the stored wavefield state at the time it is needed for the crosscorrelation. For example, 

we would re-compute snapshots for time t  = [3001, 3002, 3003, …, 3999] from the 

stored wavefield state at time t  = 3000. Thus, without storing all the model snapshots at 

every time t onto disk, the imaging condition can be implemented, although the 

modelling has to be done twice (Figure 4). 

Even though the modelling is done twice, the computation is still accelerated. Without 

this re-modelling strategy, the modelling and migration experiment over the size-shrunk 

Marmousi model, which is padded to a 10484452 grid, could only be done serially on 

the Gilgamesh node storing only one component of the snapshots because of the limited 

local disk space. The computation time was 12048 seconds, i.e., approximately 3.35 

hours for one shot. To compute 32 shots shot-by-shot, it would take 385536 seconds, i.e., 

107.09 hours. Now, with this re-modelling strategy, all 8 CPU cores are made use of at 

the same time, and although the modelling of each shot is done twice, the computation 

time is still reduced. The parallel computation time is 143757 seconds, i.e., 

approximately 40 hours for 32 shots. Thus the computation time is reduced by more than 

62.7%. 

OTHER COMPUTATIONAL COST PROBLEMS 

There also exist some other problems in addition to the computing time and free disk 

space challenges. Here we describe two of them: memory requirements and the 

bottleneck of hard disk drive I/O speed. 
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FIG. 4. Do modelling twice instead of once, to keep the disk space requirements within available 
limits. 

Reverse-time migration needs a large amount of memory. Take for example the well-

known elastic Marmousi2 model. The model has a 280113601 grid. Thus, there are 

38,096,401 nodes in all. For each node, 4 bytes are needed to store data of type „float‟, 

which means 152,385,604 bytes for the matrix. The elastic model has 3 parameter 
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matrices: densities, P-wave velocities, and S-wave velocities, which are used in a non-

staggered grid finite-difference method, or densities and Lamé coefficients, which are 

used in a staggered-grid scheme. So, to load the model, 457,156,812 bytes or 

approximately 436 MB of memory are needed. To perform finite-differencing, 5 more 

parameter matrices (2 particle velocities and 3 stresses in the case of a staggered-grid 

scheme) of the same size as the grid need to be loaded in memory for each of 2 

successive time steps. So the memory needed for finite-differencing is 1,523,856,040 

bytes, i.e., more than 1,453 MB. Thus, the total memory requirement for forward 

modelling or reverse-time extrapolation is at least 1,981,012,852 bytes, i.e., more than 

1,889 MB. 

Hard disk drive input / output speed is sometimes the performance bottleneck of 

parallel programs which are based on multi-core processing. There are two reasons why 

hard disks can be the bottleneck. First, hard disk I/O speed is much slower than memory 

I/O. Secondly, the eight CPU cores in one Gilgamesh node compete with each other for 

writing to and reading from the two local disks. When there is a lot of disk I/O, the whole 

node will be slowed down. In fact, we actually observed this phenomenon: when all the 

eight CPU cores are computing without disk I/O, the percentage of CPU usage shown by 

the utility „top‟, is usually 800 percent or close to this number, i.e., all the eight cores are 

fully made use of; when the eight CPU cores need to do disk I/O, the percentage 

sometimes can be as low as 200, i.e., six of the eight CPU cores are waiting for the disks 

at that moment. 

If we must process large-size seismic data, or we must do a lot of disk I/O for some 

other reasons, we would have to learn to play some new tricks to overcome the 

challenges. 

CONCLUSIONS 

Modelling and reverse-time migration based on finite-difference methods are 

compute-intensive. The challenges are the long computational time and the need of large 

hard disk free space. To accelerate computation, parallel computing is implemented using 

Intel TBB and multi-core computers; to overcome disk space limitations, the modelling 

part of the reverse-time migration is done twice, instead of once, in “chunks” whose size 

is optimized to avoid exceeding the available disk space. 
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APPENDIX 

Before Intel TBB can be used, environment variables need to be registered to the 

operating system. Unfortunately, the Intel TBB documentation does not cover all the 

environment variable registration cases over different operating systems. We list our 

practices as below. 

On our PC, which has Windows XP and Microsoft visual C++ 2008 Express Edition 

installed, environment variables are manually set, since, unfortunately, the Intel TBB 

plug-in for Microsoft Studio did not work. The manual way of registering environment 

variables is: right click 'My Computer' --> Properties --> Advanced --> Environment 

variables. On the dialog 'Environment variables', set values for the variables 'include', 'lib', 

and 'path'. Suppose that the Intel TBB directory 'tbb21_20080605oss' is copied to 

'C:\Program Files\Intel\', and suppose that the CPU has a 32-bit Intel Architecture, then 

add 'C:\Program Files\Intel\tbb21_20080605oss\include' to the 'include' variable, 

'C:\Program Files\Intel\tbb21_20080605oss\ia32\vc9\lib' to the 'lib' variable, and 

'C:\Program Files\Intel\tbb21_20080605oss\ia32\vc9\bin' to the 'path' variable. 

When Fedora 9 is used on the PC, the following lines are added to the bash shell start-

up file: 

    TBB21_INSTALL_DIR=$HOME/tbb21_20080605oss 

    TBB_ARCH_PLATFORM=ia32/cc4.1.0_libc2.4_kernel2.6.16.21 

    LD_LIBRARY_PATH="${TBB21_INSTALL_DIR}/${TBB_ARCH_PLATFORM}/lib" 

    export LD_LIBRARY_PATH 

    LIBRARY_PATH="${TBB21_INSTALL_DIR}/${TBB_ARCH_PLATFORM}/lib" 

    export LIBRARY_PATH 

    CPATH=$HOME/tbb21_20080605oss/include 

    export CPATH 

where „$HOME/tbb21_20080605oss‟ is the directory of the Intel TBB package. 

To use Intel TBB on Gilgamesh, on which the operation system is CentOS, a „.cshrc‟ 

start-up file is created, which contains: 

    setenv TBB21_INSTALL_DIR  $HOME/tbb21_20080605oss 

    setenv TBB_ARCH_PLATFORM em64t/cc4.1.0_libc2.4_kernel2.6.16.21 

    setenv LD_LIBRARY_PATH  $TBB21_INSTALL_DIR/$TBB_ARCH_PLATFORM/lib 

    setenv LIBRARY_PATH  $TBB21_INSTALL_DIR/$TBB_ARCH_PLATFORM/lib 

    setenv CPATH   $HOME/tbb21_20080605oss/include 
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where „$HOME/tbb21_20080605oss‟ is the directory of the Intel TBB package. 


