# Error distribution when using first-break arrival times to locate microseismic events

Baolin Qiao and John C. Bancroft

## ABSTRACT

SVD method was used to estimate 3D hypocenter location and origin time of a microseismic event. Given variance of observed first-break arrival time, 3D error distribution of hypocenter location is calculated. It is shown that uncertainty in vertical direction is much bigger than that in horizontal directions.

## **INTRODUCTION**

Microseismic monitoring has seen increasing application to hydraulic fracture monitoring and steam-assisted heavy oil production, it made possible to economically define treatment parameters and optimal well spacing.

First-break arrival times can be used to estimate location of a microseismic event and its origin time. Figure 1 shows the geometry of ray path from source to surface receivers, constant RMS velocity is assumed for simplification.





Given first-break arrival times  $t_1$ ,  $t_2$ ,  $t_3$ ,  $t_4$ , ...,  $t_m$  at receivers  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$ , ...,  $R_m$ , the location and origin time of a microseismic event can be estimated (Bancroft and Du, 2006). Suppose that all receivers start to record data at arbitrary clock-time  $t_0$  and receiver  $R_i$  ( $x_i$ ,  $y_i$ ,  $z_i$ ) record first-break arrival time at  $t_i$ , then the travel time from hypocenter to receivers satisfy

$$v^{2}(t_{i}-t_{0})^{2} = (x_{i}-x)^{2} + (y_{i}-y)^{2} + (z_{i}-z)^{2}.$$
 (1)

In order to change above quadratic equations into a linear parameter estimation problem, we apply above equation in receiver  $R_{i-1}$ ,

$$v^{2}(t_{i-1} - t_{0})^{2} = (x_{i-1} - x)^{2} + (y_{i-1} - y)^{2} + (z_{i-1} - z)^{2}.$$
 (2)

Subtract (2) from (1) we will get:

$$2(x_{i}-x_{i-1})x + 2(y_{i}-y_{i-1})x + 2(z_{i}-z_{i-1})z - 2v^{2}(t_{i}-t_{i-1})t_{0}$$
  
=  $v^{2}(t_{i}^{2}-t_{i-1}^{2}) + x_{i}^{2} + y_{i}^{2} + z_{i}^{2} - (x_{i-1}^{2}+y_{i-1}^{2}+z_{i-1}^{2}).$  (3)

If we write it in matrix form, it will be

$$\begin{bmatrix} 2(x_{2}-x_{1}) & 2(y_{2}-y_{1}) & 2(z_{2}-z_{1}) & -2v^{2}(t_{2}-t_{1}) \\ 2(x_{3}-x_{2}) & 2(y_{3}-y_{2}) & 2(z_{3}-z_{2}) & -2v^{2}(t_{3}-t_{2}) \\ 2(x_{4}-x_{3}) & 2(y_{4}-y_{3}) & 2(z_{4}-z_{3}) & -2v^{2}(t_{4}-t_{3}) \\ \vdots & \vdots & \vdots & \vdots \\ 2(x_{m}-x_{m-1}) & 2(y_{m}-y_{m-1}) & 2(z_{m}-z_{m-1}) & -2(t_{m}-t_{m-1}) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ t_{0} \end{bmatrix} \\ = \begin{bmatrix} d_{1} \\ d_{2} \\ d_{3} \\ \vdots \\ d_{m} \end{bmatrix},$$
(4)

where

$$d_{i} = v^{2}(t_{i}^{2} - t_{i-1}^{2}) + x_{i}^{2} + y_{i}^{2} + z_{i}^{2} - (x_{i-1}^{2} + y_{i-1}^{2} + z_{i-1}^{2}).$$
(5)

For convenience, we denote the coefficient matrix at the left-side of equation (4) as G, the parameter vector to be estimated as m and known data at the right-side as d.

$$Gm = d. \tag{6}$$

To solve this linear regression problem singular value decomposition (SVD) method (Aster et al., 2005) is used in this paper. First, G is factored into

$$\boldsymbol{G} = \boldsymbol{U}\boldsymbol{S}\boldsymbol{V}^{T},\tag{7}$$

where U is m by m orthogonal matrix with columns that are unit basis vectors, S is m by 4 diagonal matrix with nonnegative diagonal elements called singular values, V is 4 by 4 orthogonal matrix with columns that are basis vectors and T means transpose.

If only the first p singular values are nonzero, we can partition S as

$$\mathbf{S} = \begin{bmatrix} \mathbf{S}_p & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}. \tag{8}$$

Then the solution to *m* will be

$$\boldsymbol{m} = \boldsymbol{V}_p \boldsymbol{S}_p^{-1} \boldsymbol{U}_p^T \boldsymbol{d}, \tag{9}$$

where  $V_p$  and  $U_p$  mean the first p columns of V and U, -1 means inverse of a matrix.

Assume that measurement errors of  $t_i$  are independent and normally distributed, standard deviations  $\sigma_i$  can be incorporated into the solution by weighting **G** and **d**,

$$\boldsymbol{G}_{w} = diag(\frac{1}{\sigma_{1}}, \frac{1}{\sigma_{2}}, \dots, \frac{1}{\sigma_{m}})\boldsymbol{G}, \qquad (10a)$$

$$\boldsymbol{d}_{W} = diag(\frac{1}{\sigma_{1}}, \frac{1}{\sigma_{2}}, \dots, \frac{1}{\sigma_{m}})\boldsymbol{d}.$$
 (10b)

If standard deviation for every  $t_i$  is identical, the covariance C of estimated parameters can be simply calculated by

$$\boldsymbol{C} = \sigma^2 \boldsymbol{V}_p \boldsymbol{S}_p^{-2} \boldsymbol{V}_p^T. \tag{11}$$

Covariance C can be used to estimate 95% confidence intervals for individual parameters which is given by

$$m \pm 1.96 \, diag(C)^{1/2}$$
. (12)

If we consider combinations of multi-parameter, the 95% confidence region is a 3D ellipsoid. This ellipsoid can be calculated by diagonalizing inverse of covariance,  $C^{1}$ ,

$$\boldsymbol{C}^{-1} = \boldsymbol{P}^T \boldsymbol{\Lambda} \boldsymbol{P}, \tag{13}$$

where  $\Lambda$  is a diagonal matrix of positive eigenvalues and the columns of P are orthonormal eigenvectors. The *i*th semimajor error ellipsoid axis direction is defined by  $P_{..i}$ , its length *l* is determined by

$$l = \Delta / \sqrt{\Lambda_{i,i}},\tag{14}$$

where  $\Delta$  is the 95<sup>th</sup> percentile of  $\chi^2$  distribution with 4 degrees of freedom.

#### EXAMPLE

A synthetic experiment was carried out to test the SVD method and estimate the error distribution of microseismic events. Suppose the source's position is S(x=70, y=70, z=1000) and generate a microseismic event at t=1.6s.

Ten surface receivers were used to record first-break arrival times, they are located at  $x = \{10\ 20\ 30\ 40\ 50\ 60\ 80\ 90\ 100\ 110\}, y = \{10\ 20\ 30\ 40\ 50\ 80\ 90\ 100\ 110\ 120\}, z = \{0\ 2\ 1\ 4\ 3\ 3\ 5\ 7\ 3\ 2\}.$ 

The first-break arrival times are calculated by

$$\boldsymbol{t} = t + \frac{\sqrt{(x-70)^2 + (y-70)^2 + (z-1000)^2}}{v},$$
(15)

where constant RMS velocity v=3000 m/s is used.

Arrival times t were perturbed with Gaussian distribution of zero mean and standard deviation of 10ms and 2ms respectively, the 10ms uncertainty is considered an upper bound when observing first-break arrival times (Eisner et al., 2009).

Figures 2 and 3 are 2D view of error distribution with 10ms and 2ms standard deviation respectively. It shows that uncertainty in vertical direction z is much bigger than that in horizontal directions x and y. For example, with deviation equals to 10ms, error in z direction is about 60 meters which is bigger than 8 meters in x direction.



Figure 2. 2D view of error distribution of source with std=10ms.



Figure 3. 2D view of error distribution of source with *std*=2ms.

3D view of error distribution, std=2ms

Figure 4 is 3D view of error distribution of source with standared deviation equals to 10ms and 2ms respectively.



3D view of error distribution, std=10ms

Figure 4. 3D view of error distribution of source with std=10ms (left) and std=2ms (right).

## **CONCLUSION**

Given first-break arrival time at each receiver, SVD method can be used to estimate a microseismic event and its origin time. If standard deviation is known, which can be derived from observed visible arrival times, the error distribution of source can be estimated.

### REFERENCES

Bancroft, J.C. and Du, X., 2006, Locating microseismic events and traveltime mapping using locally spherical wavefronts: CREWES Research Report, 18.

Eisner, L. et al., 2009, Uncertainties in passive seismic monitoring: The Leading Edge, 6, 648-655.

Aster, R.C., Borchers, B. and Thurber, C.H., 2005, Parameter estimation and inverse problems: 15-64, Elsevier Academic Press.

## ACKNOWLEDGEMENT

The authors would like to thank all CREWES sponsors, staff and students for their support.