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ABSTRACT

The calculation of reflection and transmission coefficientsat any interface is an impor-
tant problem of elastodynamic theory. Historically, reflection and transmission coefficients
have been obtained in several domains according to their importance. It is known that for
isotropic case reflection and transmission coefficients depend on the acoustic impedance
contrast and angle of incidence. The angle of incidence can be computed by using the
cross product of two known unit normals. In this approach, derived reflection and trans-
mission coefficients will be in plane wave domain. By deriving reflection and transmission
coefficients in plane wave domain for 3D media, determination of dip and azimuth of in-
terface are avoided, and, thereby, we avoid ray tracing ray tracing and exposure to caustics
especially in anisotropic media. The problem that I solve, in this regard, is the problem of
the special case of dipping interface and how to rotate the plane wave coordinate system
from that determined by the computational grid, and the system determined by a dipping
interface. Classical reflection and transmission coefficients in plane wave coordinates are
worked out for reflectors aligned with the computational grid. For non-aligned reflectors,
those with dip and azimuth, computation of effective reflection and transmission coeffi-
cients is not straight forward, for this the coordinate system must be rotated. To do this,
a normal for each individual plane wave based on local velocity and vector cross prod-
uct of this normal with the normal to reflector are computed. This cross product yields a
ray parameter that presently is used to compute corresponding reflection and transmission
coefficients for a given plane wave. The importance of this approach is the automatic adap-
tation of the reflection and transmission coefficients expression to a special case of dipping
interface. These coefficients can then be used to scale the amplitude component of plane
wave extrapolation across a reflector as is done in seismic forward modeling. Another im-
portance of reflection and transmission coefficients in plane wave domain, is their use in
Rayleigh Sommerfeld Modeling(RSM) of seismic data. In linetraces and cross line traces
are required in order to model the plane wave inputs. Presently, the problem associated
with data acquisition is studied here by changing the numberof cross line traces.

INTRODUCTION

Two methods, namely, Rayleigh Sommerfeld(RS) and Kirchhoff methods have been
adopted for forward modeling in seismic exploration. Both the methods are originated
from optical diffraction theory (Ersoy, 2007). RSM has beenadopted in seismic instead of
Kirchhoff modeling because of its superiority in terms of computing time with a large data.
Rayleigh Sommerfeld Modeling(RSM) is known as 3D modeling technique. In the past,
RSM was limited to laterally varying but angle independent reflection(R) and transmission
coefficients. This work was elaborated by Cooper and Margrave for RSM with AVO. Ray
tracing was used to compute incident angle at reflecting interface. Presently, an approach
is proposed for RSM with AVO in plane wave domain in order, to avoid ray tracing and
associated problem with it like caustics especially in anisotropic media, and to make RSM
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applicable for dipping interface. Basic geometry and result of Rayleigh-Sommerfeld the-
ory are described by Margrave (Margrave and Cooper, 2007). Following the Margrave,
Rayleigh Sommerfeld modeling (RSM) can be described in three major steps

1. Extrapolation of source wave field from the source to a datum reflector

2. Multiplication of the extrapolated wavefield in (1) with a reflectivity function

3. Extrapolation of (2) back to the surface.

In frequency domain,wavefield contains two terms known as amplitude, phase and de-
scribed as

Ψ (ω) = A (ω) eiφ(ω) (1)

whereψ is the wavefield,A is the amplitude andφ is the phase term. Wavefield extrapola-
tion can be done by phase shift operator (Margrave, 2008). Atany boundary, the incident
wavefield is partially reflected from and transmitted acrossthe boundary. Reflection and
transmission coefficients play an important role in order toobtain reflected and transmit-
ted wavefield. Since the amplitudes of reflected and transmitted wavefield are obtained by
multiplying the R and T coefficients with the incident wavefield. Thus, to accomplish RSM
in plane wave domain, R and T coefficients are required in plane wave domain. Generally
in past, reflection and transmission coefficients are given in terms of angle. Presently, an
approach is described which is used to derive the reflection and transmission coefficients
in plane wave domain.

METHODOLOGY

Presently, an approach, of going from spatial frequency domain into plane wave do-
main with outτ − p transformation, delineated. The preceding argument describes the
importance of this approach in order to derive RSM in plane wave domain.
It is known that wavefield extrapolation in thex− t domain involves two dimensional con-
volution(Berkhout, 1982). Time can be replaced by temporalfrequency and now convolu-
tion, in one dimension only, is involved in extrapolation. The space variablex is replaced
by the spatial frequency variablekx by a second Fourier transformation and only multipli-
cation is involved for extrapolation in thekx − ω domain. Now, an approach is invoked at
this place in order to transform the wavefield fromx− ω domain into plane wave domain.
The mathematically description is given in next paragraph.
The monochromatic wavefield can be transformed from space domain into spatial fre-
quency domain as

ϕ
(

~k
)

ω
=

∫

Ψ (~x)ω e
(i~k•~x) ~dx, (2)

where• is the dot product, equation (2) can be written as

ϕ
(

~k
)

ω
=

∫

Ψ (~x)ω e

“

iω
~k
ω
•~x

”

~dx, (3)

now using relation~k = ω~p, where~p is the slowness vector equation (3) is written as

ϕ (~p)ω =

∫

Ψ (~x)ω e
(i~p•~x) ~dx. (4)
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Thus using equations (2), (3), (4) monochromatic wavefield can be described in plane wave
domain without usingτ − p transformation.
The importance of this approach in RSM is described presently. According to Rayleigh
Sommerfeld diffraction theory the source wavefield at any observation point can be de-
scribed as (Margrave and Cooper, 2007)

Ψ(x = P ) =
1

4π

∫

s

Ψ0(~xs)W ( ~xp − ~xs)ρ(s)ds, (5)

whereP is the observation point and~xp = (xp, yp, zp), ~xs = (xs, ys, zs) are the coordinates
of the screen (reflector) and observation point, respectively. W is the z derivative of the
Green’s function,ρ(s = (xs, ys)) is the reflectivity function andds = dxdy. Since equation
(5) is convolution, it can be described in Fourier domain(Margrave and Cooper, 2007) as

Ψ(x) =
1

4π

∫

s

Ŵ (kx, ky, zp − zs) Ψ̂0ρ ((kx, ky, zs) e
ikxx+ikyydkxdky. (6)

where ‘hats’ indicate 2D Fourier transform overx andy. As per equation (6) Rayleigh
Sommerfeld modeling is just phase shift migration backwards(Margrave and Cooper, 2007).
It is revealed from above equations that Fourier transformation takes place in RSM. Now
using transformation by equations (2), (3), and (4), RSM canbe described in plane wave
domain. Further, to accomplish the RSM it is required to obtain the reflection and trans-
mission coefficients in plane wave domain. Now, the approachis discussed which make it
possible.

Plane wave domain approach in order to obtain R and T coefficients

Historically, the calculation of reflection and transmission coefficients for a plane waves
on a free surface and welded contact interface was obtained by Zeoppritz(Borejko, 1996).
This work was elaborated by Aki and Richards(Aki and Richards, 1980). The analytic
expressions of reflection and transmission coefficients areknown in term of the incident
angle. The angle of incidence is the angle that of the incident and scattered plane make
with the normal to the plane reflector. The plane of incidencecan be represented by the
unit normal vector to the plane wave in the propagation direction and can be computed as
(Ferguson and Margrave, 2008)

p̂ =
p1̂i + p2̂j + qk̂
√

p2
1 + p2

2 + q2
, (7)

wherep1, p2 are the input plane wave parameters andq is the vertical slowness in the inci-
dent medium andp1, p2, q are coupled according to a relation derived from the dispersion
relation as

q =
1

v

√

1 − (vp1)2 − (vp2)2. (8)

wherev is the velocity of the incident medium. The unit normal associated with reflecting
subsurface plane can be computed as

â = sin θ cos φ̂i + sin θ sin φ̂j + cos θk̂. (9)
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FIG. 1. Schematic representation of unit normals to plane wave and horizontal interface,the angle
of incidence θI is the angle between normalp̂ and â. x1, x2 are the horizontal coordinate axis and
x3 is the vertical axis.

whereθ is the dip andφ is the azimuth of the normal to the interface. These two unit
normals are shown in Figure 1. Figure 1 shows the two unit normal vector,p̂, normal to
the plane wave in propagation direction, andâ, normal to the horizontal interface shown
by shaded plane. Now, following the simple vector calculus,the cross product of these two
unit normal vectors is used to obtain the angle of incidenceθI as

sin θI = |p̂× â|, (10)

The sine of angle of incidence is related to slowness along the interface as

pI =
sinθI

v
= |p̂× â|

√

p2
1 + p2

2 + q2. (11)

wherepI is the slowness along the interface(ray parameter). Thus, the angle of incidence is
obtained according to equation (10). After obtaining the angle of incidence from equation
(11), this value is substituted in the known analytic expression (Kennett, 2001) in order to
obtain R and T coefficients in plane wave domain.
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3D R and T coefficients for SH wave

It is known that evaluating the reflection and transmission coefficients are beneficial to
interpret the field records for lithology, fluid content etc by generating synthetic seismo-
grams (Upadhyay, 2004). Incident, reflected, and transmitted plane P and S waves make
a pertinent system. The assumption of two dimensional planewaves ensures us to discuss
two separate groups of waves (Slawinski, 2003). These groups are the coupled P and SV
waves, and the SH waves. The analytic expression of reflection and transmission coeffi-
cients for three dimensional plane waves in elastic media were given by Borejko (Borejko,
1996). Generalized ray- integral representation of pertinent waves were used in that pa-
per.Generalized ray integral representation of SH wave fordipping structure was given by
Zieger and Pao (Pao et al., 1984). Further, assuming isotropy, the standard ‘2D’ formulas
(Krebes, 2004) can be used for any plane reflector regarding its 3D orientation. According
to seismic reflection theory, when an incident plane wave encounters the discontinuities in
the properties at a horizontal interface between two homogeneous layers, there both the
phenomenas: reflection from the boundary and transmission through the boundary take
place. The boundary conditions, the continuity of displacement and traction, are con-
sidered at the boundary to obtain the amplitude informationof reflected and transmitted
waves. After applying these boundary conditions, reflection and transmission coefficients
for SH wave are known in terms of angle (Krebes, 2004). These expressions are trans-
formed into plane wave coordinates by estimating the angle of incidence using equation
(11) and written as

RSH =
ρ1v

2
1q1 − ρ2v

2
2q2

ρ1v2
1q1 + ρ2v2

2q2
, (12)

and

TSH =
2ρ1v

2
1q1

ρ1v
2
1q1 + ρ2v

2
2q2

, (13)

whereρ1, v1 are the density and velocity of the incident medium, respectively. ρ2, v2 are
the density and velocity of the refracted medium, respectively andq1 is described as

q1 (~p) =
1

v1

√

1 − (v1pI)
2, (14)

andq2 is described as

q2 (~p) =
1

v2

√

1 − (v2pI)
2. (15)

Dipping interface problem

Above expression of reflection and transmission coefficients can be used for a special
case of dipping interface problem. In this case normal to theinterface(see the Figure 2)
would be different from horizontal one and can be computed from equation (9). Figure 2
shows the tilted interface and̂a is normal to this interface. An assumption, that normal to
the interface lies in plane of propagation, is considered here. This constraint is applied on
the equation (9). This assumption ensures that SH wave is still decoupled from P and SV
waves (Sten and Wysession, 2002). Now, ray parameter for each individual plane wave is
computed according to equation (11) and used in equations (12) and (13) in order to obtain
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FIG. 2. Schematic representation of unit normals to plane wave and tilted interface,the angle of
incidence θI is the angle between normalp̂ and â. x1, x2 are the horizontal coordinate axis and x3

is the vertical axis.

R and T coefficients for dipping interface, respectively.
In line and cross line slices of R and T coefficients can be obtained usingp2 = 0,

p1 = 0,respectively. Recalling equation (11) forp2 = 0, the ray parameter is the same
as horizontal slowness(p1) in 2D case and forp1 = 0 it would bep2. Further, in line and
cross line reflection and transmission coefficients can be obtained using equations (12) and
(13) with differentq1 andq2 from the equations (14) and (15). These equations are deduced
and given as

q1 (~p) =
1

v1

√

1 − (v1p1)
2, (16)

and

q2 (~p) =
1

v2

√

1 − (v2p1)
2, (17)

for in line, and

q1 (~p) =
1

v1

√

1 − (v1p2)
2, (18)

and

q2 (~p) =
1

v2

√

1 − (v2p2)
2. (19)

for cross line.
For the zero slowness, the reflection and transmission coefficients are same for both in line
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and cross line cases and independent from the frequency. These are given as

RSH =
ρ1v1 − ρ2v2

ρ1v1 + ρ2v2

, (20)

and

TSH =
2ρ1v1

ρ1v1 + ρ2v2
. (21)

respectively.

EXAMPLES

Now to explore the reflection and transmission coefficients change withp1 andp2, an
example in whichv1 = 1500m/s andv2 = 2500m/swith same density across the reflector
is considered. Equations (12) and (13) are used to compute the reflection and transmission
coefficients. Figure 3 shows 3D real and imaginary part of reflection and transmission co-
efficients, respectively. Presently, 512 in line and cross line traces are used for a particular
frequency, 40Hz. Here, horizontal reflector is used. Figure4 shows the in line and the cross
line slice of reflection and transmission coefficients that are based on equations ((16) and to
(19)). At zero slowness, the reflected wave has an amplitude -0.25(as predicted by equation
(20)), whereas the transmitted wave amplitude is 0.75. As horizontal slowness increases
to larger value, the amplitude of the transmitted wave increases and the reflected ampli-
tude approaches to zero. Recalling equation (12), the reflected amplitude would be zero
when horizontal slownessp1 is equal to1/

√

v2
1 + v2

2 i.e 0.000343 s/m (see the appendix
for mathematical manipulation). Despite crossing a significant change in velocity, there is
no reflected wave for a plane wave at this horizontal slownesswhile transmitted wave has
amplitude 1. Further, as slowness value increases larger tothis slowness, the amplitude of
transmitted wave continues to increase. This amplitude of transmitted wave increase due to
an increase in the horizontal orientation of the transmitted wave. At the critical slowness,
the transmitted wave would be horizontal. This implies thatthe vertical slowness in second
medium will be zero. According to equation (17), this occursatp1 = 1/v2 = .0004m/s. At
this value of slowness, the amplitude is 2 for the transmitted SH wave and 1 for reflected
wave. Beyond the critical slowness, there is no transmittedwave in lower layer andq2
is imaginary in this situation. They are known as evanescentwaves and their amplitudes
decay with depth. Due to the imaginary vertical slowness, the reflection and transmission
coefficients become complex beyond the critical slowness. Once the coefficients become
complex, the shape of reflected pulse and transmitted pulse is modified (Kennett, 2001).
Following this theory, there will be a distortion of the reflected and transmitted pulses at
p1 > 1/v2 as depicted in Figure 4 . Same description can be used for cross line slices of
the reflection and transmission coefficients.
Figure 5 shows the real and imaginary part of the 3D reflectionand transmission coef-

ficients when interface is dipping. In line and cross line slice of the reflection and trans-
mission coefficients are shown in Figure 6. In Figure 6 the region, in between negative
and positive critical slowness, is shifted and not symmetrical about zero slowness. In this
figure the reflected and transmitted amplitudes are not getting values 1 and 2 respectively
at positive critical slowness. The reason of this discrepancy is the discussed in the next
paragraph.
The same number of in line and cross line traces are used by now. Presently, the number
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FIG. 3. a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient. c) Real part
of transmission coefficient. d) Imaginary part of transmission coefficient. 512 in line and 512 cross
line traces are used.
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FIG. 4. a) In line slice of reflection coefficient. b) Cross line slice of reflection coefficient. c) In line
slice of transmission coefficient. d) Cross line slice of transmission coefficient.
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FIG. 5. a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient. c) Real part
of transmission coefficient. d) Imaginary part of transmission coefficient for dipping interface.
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of in line traces is fixed and different number of cross line traces are used in order to see
the effect of this change on the reflection and transmission coefficients. Figures 7 and 8
are obtained with 512 in line traces and 128 cross line traces. The description for in line
slice of the reflection and transmission coefficients is sameas given previously. Here, the
cross line slices of the reflection and transmission coefficients are considered. For cross
line slice, the reflected amplitude is -0.25 and transmittedamplitude is 0.75 at zero slow-
ness(as predicted by the equations (20) and (21)). In this case, the extracted reflected and
transmitted amplitudes are not as predicted by equations (12) and (13) at critical slowness.
The reason is that there is no sample point in MATLAB at critical slowness in this case.
The sample rate depends on the number of traces inversely andit is 0.000019 s/m along
the slowness axis. In this case, near to the slowness(0.000343s/m) at which reflected am-
plitude is expected to be zero, the obtained slowness in MATLAB is 0.00035 s/m while the
occurred slowness near to critical slowness is 0.0004039 s/m. The obtained sample point
just before to 0.0004039 s/m is 0.00039 s/m. Now the interpolation is used in MATLAB
to get the values at all the points in between two sample points. According to theory, the
amplitude values of the reflected and transmitted waves at these two sample points are not
such that the expected result is obtained at critical slowness using interpolation, this is be-
cause, near to critical slowness, there is large differencebetween the values of the reflected
and transmitted amplitude for closely sample points. Thus,due to interpolation used by
MATLAB, the reflected and transmitted amplitudes are not getting the expected values at
critical slowness.
Figures 9 and 10 show the real and imaginary part of the 3D reflection and transmission

coefficients, and in line and cross line slices of coefficients with same input as previous but
for dipping interface(dip=15◦), respectively. These figures show some shifting along slow-
ness axis and are not symmetric about zero slowness. Here, inline and cross line slices
show inconsistency in the reflected and transmitted amplitudes at positive and negative
Nyquists. This is again attributed to the problem associated with MATLAB programming.
In programming, the negative Nyquist is used as per theory but positive Nyquist is taken
as the difference of the positive Nyquist and sample rate. Itis known that sample rate de-
pends on the number of traces inversely. The less number of traces means coarse sample
rate and coarse sample rate means a considerable differencebetween positive Nyquist and
negative. Thus, there is the difference in the values of the reflected and transmitted ampli-
tude occurring at the positive and negative Nyquists. Now, the figures for the reflection
and transmission coefficients are drawn with same input parameters as previous model but
different number of cross-line traces. Presently, only 8 cross-line traces are used. Figures
11 and 12 demonstrate the obtained results for this case. As can be seen, in cross line slices
of the reflection and transmission coefficients, the reflected amplitude and transmitted am-
plitude is -0.25 and 0.75 at zero slowness( as predicted by equations (20) and (21)). The
values of the reflected amplitude and transmitted amplitudeare decreasing and increas-
ing respectively as slowness increases for the reflected andtransmitted but in this case the
pattern of the reflection and transmission coefficients is differing very much from expected
one . Here, the sample rate is 0.000312 s/m that is very coarsewhile the difference between
the critical slowness and the slowness at which reflected amplitude is zero, is .000057 s/m.
It shows that there is no point between these two slownesses whereas there is big difference
occurred in the amplitudes at these slownesses. Presently,MATLAB uses the interpolation
to get the values of amplitude at the slownesses in between two sample points. Thus, the
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FIG. 7. a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient. c) Real part
of transmission coefficient. d) Imaginary part of transmission coefficient for horizontal interface.
512 in line and 128 cross line traces are used.
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FIG. 8. a) In line slice of reflection coefficient. b) Cross line slice of reflection coefficient. c) In
line slice of transmission coefficient. d) Cross line slice of transmission coefficient for horizontal
interface
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FIG. 9. a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient. c) Real part
of transmission coefficient. d) Imaginary part of transmission coefficient for dipping interface.
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FIG. 10. a) In line slice of reflection coefficient. b) Cross line slice of reflection coefficient. c) In line
slice of transmission coefficient. d) Cross line slice of transmission coefficient for dipping interface.
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FIG. 11. a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient. c) Real
part of transmission coefficient. d) Imaginary part of transmission coefficient for horizontal interface.
512 in line and 8 cross line traces are used.

obtained results are very far away from expected ones. TheseFigures(13, 14) are for dip-
ping interface. In this case the cross-line slice gives the distorted picture of the amplitude
of the reflected and transmitted waves.

DISCUSSION AND CONCLUSIONS

The angle of incidence is obtained by using the cross productof two known unit nor-
mals. This value of incident angle is used in analytic expressions of R and T coefficients.
Thus,the reflection and transmission coefficients have beenobtained in plane wave domain.
First of all reflection and transmission coefficients have been obtained for the reflector
aligned with computational grid. Presently, it has been shown that obtaining reflection and
transmission coefficients for the reflector non-aligned with computational grid is easy. The
importance of this approach is the automatically adaptation of R and T expressions to the
special dipping interface case. The power of this is that no ray tracing is required. The
reflection and transmission coefficients obtained for same number of in line traces but dif-
ferent number of cross line traces, show the deviation from the expected one. It reveals the
problem associated with data acquisition and make it required to acquire the data correctly.
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FIG. 12. a) In line slice of reflection coefficient. b) Cross line slice of reflection coefficient. c) In
line slice of transmission coefficient. d) Cross line slice of transmission coefficient for horizontal
interface.
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FIG. 13. a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient. c) Real
part of transmission coefficient. d) Imaginary part of transmission coefficient for dipping interface.
512 in line and 8 cross line traces are used.
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FIG. 14. a) In line slice of reflection coefficient. b) Cross line slice of reflection coefficient. c) In line
slice of transmission coefficient. d) Cross line slice of transmission coefficient for dipping interface.
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Cross line slice does not show any effect of dipping interface only in line slice does.

FUTURE WORK

1. Rayleigh Sommerfeld Modeling with AVO.

2. RSM for dipping interface.In this paper, only a special case of dipping interface is
discussed here but in future I will try to solve the problem ofa generalized case of
dipping interface. For this the idea is to carry the information of polarization vector
of vector wavefield through the wavefield propagation. By knowing the polarization
vector at the earth surface, this information can be carriedto the reflector in wave-
field extrapolation. If reflector is dipping, then compute the component of vector
wavefield in a rotated coordinate system that coincides withdipping interface. Now
carry this information of vector wavefield back to the earth surface, and then rotate
coordinate system again. Anisotropic case will be considered in future.
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APPENDIX

TO FIND THE VALUE OF SLOWNESS AT WHICH REFLECTED AMPLITUDE
WOULD BE ZERO

From equation (12) reflection coefficientRSH is zero when

ρ1v
2
1q1 = ρ2v

2
2q2, (A-1)

Where, in this example, density(ρ) is the same across the interface. Further, constantρ
simplifies equation (A-1) so that

v2
1q1 = v2

2q2. (A-2)

Using equations (16) and (17), replaceq1 andq2 in equation (A-2) to get

v2
1

(

1 − (v1p1)
2) = v2

2

(

1 − (v2p1)
2) (A-3)

where we have squared both sides.
Solutionp1 for equation (A-3) corresponds to the ray parameter whereRSH is zero,

p1 =
1

√

v2
2 + v2

1

(A-4)

ENERGY FLUX FOR REFLECTED AND TRANSMITTED WAVES

Earlier it is seen that the transmission coefficent exceeds 1at critical slowness. The
energy transported by the traveling wave is considered to see how it occurs because energy
must be conserved. For a harmonic SH plane wave, the flux of energy per unit wavefront,
E, in the direction of propagation is the product of the energydensity(energy per unit area)
and the velocity (Sten and Wysession, 2002)

E = A2ω2ρβ/2 (A-5)

whereA is the amplitude of wave andρ is the density of medium. Since welded contact of
two medium is considered, there is no energy to be accumulated at the interface. According
to law of energy conservation, energy flux of the incident wave would be equal to the
reflected and transmitted waves energy fluxes. Energy fluxes for the constituent waves are

EI = ω2ρ1β1 cos j1dx/2, (A-6)

for the incident SH wave

ER = R2
SHω

2ρ1β1 cos j1dx/2, (A-7)

for the reflected wave, and

ET = T 2
SHω

2ρ2β2 cos j2dx/2, (A-8)

for the transmitted wave,where an incident wave has unit amplitude,dx is the element of
the interface,j1, j2 are the angle of incidence and transmission, respectively.These fluxes
satisfy the conservation of energy

EI = ER + ET , (A-9)
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and this expression can be written in terms of the incident, reflected and transmitted energy
fluxes as

ρ1β1 cos j1 = R2
SHρ1β1 cos j1 + T 2

SHρ2β2 cos j2, (A-10)

In terms of the vertical slowness, equation (A-10) is

ρ1β
2
1q1 = R2

SHρ1β
2
1q1 + T 2

SHρ2β
2
2q2, (A-11)

It is seen from in line and cross line slices of the R and T coefficients (Figure 4), at zero
slowness the reflection and transmission coefficients are -0.25 and 0.75, respectively, while
density is the same across the boundary and velocitiesβ1=1500m/s andβ2=2500 m/s are
used. To verify this result in terms of energy conservation,q1 andq2 are replaced by1/β1

and1/β2,respectively at zero slowness (normal incidence,j1 =0 andj2 =0), and equation
(A-11) becomes

1 = R2
SH + T 2

SH

β2

β1

(A-12)

Using the value of variables used in above equation we get1 = (−0.25)2 + (0.75)2 ∗
2500/1500 from equation (A-12) and it reveals that energy is conservedat zero slowness.
Now we consider the critical slowness case where reflected and transmitted amplitudes
are 1 and 2, respectively. To verify this result the verticalslowness in medium2, q2, is
zero(j1 = critical andj2 = π/2). Recalling the equation (13), the transmission coefficient
goes to 2 as slowness approaches the critical value but according to equation (A-8), the
energy of the transmitted wave vanishes at this slowness because wavefront factorcosj2 is
vanished here. Thus, energy is conserved here also.
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