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ABSTRACT

The calculation of reflection and transmission coefficieitany interface is an impor-
tant problem of elastodynamic theory. Historically, refileec and transmission coefficients
have been obtained in several domains according to themwritaupce. It is known that for
isotropic case reflection and transmission coefficientedepn the acoustic impedance
contrast and angle of incidence. The angle of incidence eacomputed by using the
cross product of two known unit normals. In this approachived reflection and trans-
mission coefficients will be in plane wave domain. By deriyieflection and transmission
coefficients in plane wave domain for 3D media, determimatibdip and azimuth of in-
terface are avoided, and, thereby, we avoid ray tracingreayng and exposure to caustics
especially in anisotropic media. The problem that | solaehis regard, is the problem of
the special case of dipping interface and how to rotate theepvave coordinate system
from that determined by the computational grid, and theesysdetermined by a dipping
interface. Classical reflection and transmission coeffisién plane wave coordinates are
worked out for reflectors aligned with the computationatigfror non-aligned reflectors,
those with dip and azimuth, computation of effective refteciand transmission coeffi-
cients is not straight forward, for this the coordinate sgsimust be rotated. To do this,
a normal for each individual plane wave based on local valand vector cross prod-
uct of this normal with the normal to reflector are computetisTcross product yields a
ray parameter that presently is used to compute correspgmeilection and transmission
coefficients for a given plane wave. The importance of thimagch is the automatic adap-
tation of the reflection and transmission coefficients esgion to a special case of dipping
interface. These coefficients can then be used to scale thitaae component of plane
wave extrapolation across a reflector as is done in seismi@fd modeling. Another im-
portance of reflection and transmission coefficients in @haave domain, is their use in
Rayleigh Sommerfeld Modeling(RSM) of seismic data. In lireces and cross line traces
are required in order to model the plane wave inputs. Prigsehé problem associated
with data acquisition is studied here by changing the nurobeross line traces.

INTRODUCTION

Two methods, namely, Rayleigh Sommerfeld(RS) and Kirchhwfthods have been
adopted for forward modeling in seismic exploration. Bdtk tnethods are originated
from optical diffraction theory (Ersoy, 2007). RSM has beelopted in seismic instead of
Kirchhoff modeling because of its superiority in terms ofrgmuting time with a large data.
Rayleigh Sommerfeld Modeling(RSM) is known as 3D modelieghnique. In the past,
RSM was limited to laterally varying but angle independefiection(R) and transmission
coefficients. This work was elaborated by Cooper and MasggfavRSM with AVO. Ray
tracing was used to compute incident angle at reflectingfade. Presently, an approach
is proposed for RSM with AVO in plane wave domain in order, Yoid ray tracing and
associated problem with it like caustics especially in aimegpic media, and to make RSM
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applicable for dipping interface. Basic geometry and tesiRayleigh-Sommerfeld the-
ory are described by Margrave (Margrave and Cooper, 200@)owing the Margrave,
Rayleigh Sommerfeld modeling (RSM) can be described irethmajor steps

1. Extrapolation of source wave field from the source to amaeflector
2. Multiplication of the extrapolated wavefield ih)(with a reflectivity function

3. Extrapolation of %) back to the surface.

In frequency domain,wavefield contains two terms known apliéimle, phase and de-
scribed as

U (w) = A(w) ¢ 1)
wherey is the wavefield A is the amplitude and is the phase term. Wavefield extrapola-
tion can be done by phase shift operator (Margrave, 2008angtboundary, the incident
wavefield is partially reflected from and transmitted acribesboundary. Reflection and
transmission coefficients play an important role in ordeoltain reflected and transmit-
ted wavefield. Since the amplitudes of reflected and transdhitavefield are obtained by
multiplying the R and T coefficients with the incident wavéfielr hus, to accomplish RSM
in plane wave domain, R and T coefficients are required ingol@ave domain. Generally
in past, reflection and transmission coefficients are ginetieims of angle. Presently, an
approach is described which is used to derive the reflectinti@nsmission coefficients
in plane wave domain.

METHODOLOGY

Presently, an approach, of going from spatial frequencyaiormto plane wave do-
main with outr — p transformation, delineated. The preceding argument thescthe
importance of this approach in order to derive RSM in planeendomain.

It is known that wavefield extrapolation in the- ¢t domain involves two dimensional con-
volution(Berkhout, 1982). Time can be replaced by tempivegjuency and now convolu-
tion, in one dimension only, is involved in extrapolatiorhelspace variable is replaced
by the spatial frequency variable by a second Fourier transformation and only multipli-
cation is involved for extrapolation in the, — w domain. Now, an approach is invoked at
this place in order to transform the wavefield fram- w domain into plane wave domain.
The mathematically description is given in next paragraph.

The monochromatic wavefield can be transformed from spaceatiointo spatial fre-
quency domain as

0 (E)w - / U (), e(F*7) d, )
wheree is the dot product, equation (2) can be written as
o (F) = / w (), e(“57) 3)
now using relatiork = wj, wherep'is the slowness vector equation (3) is written as
¢ (D), = / U (%), PV dz. (4)

2 CREWES Research Report — Volume 21 (2009)



R and T in plane wave domain

Thus using equations (2), (3), (4) monochromatic wavefialdlme described in plane wave
domain without using — p transformation.

The importance of this approach in RSM is described pregeAitcording to Rayleigh
Sommerfeld diffraction theory the source wavefield at angeptation point can be de-
scribed as (Margrave and Cooper, 2007)

1 o o o
VU(r=P)= i /‘I’o(xs)W(xp — zy)p(s)ds, (5)
whereP is the observation point ang, = (z,, y,, 2,), Ts = (s, ys, 25) are the coordinates
of the screen (reflector) and observation point, respdgtivé” is the z derivative of the
Green’s functionp(s = (x,, y,)) is the reflectivity function and, = d.d,. Since equation
(5) is convolution, it can be described in Fourier domainfilave and Cooper, 2007) as

1 R R _ _
U(z) = y / W (s, ky, 2p — 25) Wop (Ko, by, 25) €200 qk d,. (6)

where ‘hats’ indicate 2D Fourier transform overandy. As per equation (6) Rayleigh
Sommerfeld modeling is just phase shift migration backwévthrgrave and Cooper, 2007).
It is revealed from above equations that Fourier transftiondakes place in RSM. Now
using transformation by equations (2), (3), and (4), RSM lwanlescribed in plane wave
domain. Further, to accomplish the RSM it is required to wbtiae reflection and trans-
mission coefficients in plane wave domain. Now, the appraadiscussed which make it
possible.

Plane wave domain approach in order to obtain R and T coefficiets

Historically, the calculation of reflection and transmisscoefficients for a plane waves
on a free surface and welded contact interface was obtayn&edppritz(Borejko, 1996).
This work was elaborated by Aki and Richards(Aki and RickartB80). The analytic
expressions of reflection and transmission coefficientkaosvn in term of the incident
angle. The angle of incidence is the angle that of the intided scattered plane make
with the normal to the plane reflector. The plane of incidecee be represented by the
unit normal vector to the plane wave in the propagation timaand can be computed as
(Ferguson and Margrave, 2008)

. pii+ poj + gk
p= 2 2 2’
Py +Dp3+4q

wherep;, p, are the input plane wave parameters arglthe vertical slowness in the inci-
dent medium ang, p», ¢ are coupled according to a relation derived from the dispers
relation as

(7)

4= VT= (o — P ®

wherev is the velocity of the incident medium. The unit normal asste with reflecting
subsurface plane can be computed as

A = sin 0 cos i + sin O sin ¢j + cos OKk. 9)
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FIG. 1. Schematic representation of unit normals to plane wave and horizontal interface,the angle
of incidence 6, is the angle between normalp and a. x;, xo are the horizontal coordinate axis and
x3 is the vertical axis.

whered is the dip andyp is the azimuth of the normal to the interface. These two unit
normals are shown in Figure 1. Figure 1 shows the two unit abkmctor,p, normal to
the plane wave in propagation direction, anchormal to the horizontal interface shown
by shaded plane. Now, following the simple vector calcullns,cross product of these two
unit normal vectors is used to obtain the angle of incidehces

sinf; = |p x 4|, (10)

The sine of angle of incidence is related to slowness aloagntierface as

sinfy o
pr=— = [p x a|\/p? +p3 + ¢* (11)

wherep; is the slowness along the interfagay parameter Thus, the angle of incidence is
obtained according to equation (10). After obtaining thglamf incidence from equation
(11), this value is substituted in the known analytic expi@s (Kennett, 2001) in order to
obtain R and T coefficients in plane wave domain.
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3D R and T coefficients for SH wave

It is known that evaluating the reflection and transmissimefficients are beneficial to
interpret the field records for lithology, fluid content etg deenerating synthetic seismo-
grams (Upadhyay, 2004). Incident, reflected, and transthjgtane P and S waves make
a pertinent system. The assumption of two dimensional plawes ensures us to discuss
two separate groups of waves (Slawinski, 2003). These gratgthe coupled P and SV
waves, and the SH waves. The analytic expression of refteato transmission coeffi-
cients for three dimensional plane waves in elastic medra @&en by Borejko (Borejko,
1996). Generalized ray- integral representation of pentinvaves were used in that pa-
per.Generalized ray integral representation of SH wavdifgquing structure was given by
Zieger and Pao (Pao et al., 1984). Further, assuming isotiio@ standard ‘2D’ formulas
(Krebes, 2004) can be used for any plane reflector regart#ir8pi orientation. According
to seismic reflection theory, when an incident plane waveeniers the discontinuities in
the properties at a horizontal interface between two homeges layers, there both the
phenomenas: reflection from the boundary and transmishi@ugh the boundary take
place. The boundary conditions, the continuity of disptaeat and traction, are con-
sidered at the boundary to obtain the amplitude informatibreflected and transmitted
waves. After applying these boundary conditions, reflectind transmission coefficients
for SH wave are known in terms of angle (Krebes, 2004). Thepeessions are trans-
formed into plane wave coordinates by estimating the anfjleaidence using equation
(11) and written as

2 2
Repy = Plvééh ,021136127 (12)
P1V1q1 + P2v5q0
and 0pas?
Ty = —5 2L (13)

© piviqr + pavige’
wherepy, v, are the density and velocity of the incident medium, respelgt p., v, are
the density and velocity of the refracted medium, respeltigndg; is described as

m@=%W—mm% (14)

02 (@) = /1 - (vapr)?. (15)

andg, is described as

Dipping interface problem

Above expression of reflection and transmission coeffisiean be used for a special
case of dipping interface problem. In this case normal tointexface(see the Figure 2)
would be different from horizontal one and can be computethfequation (9). Figure 2
shows the tilted interface aridis normal to this interface. An assumption, that normal to
the interface lies in plane of propagation, is considerad.h€his constraint is applied on
the equation (9). This assumption ensures that SH wavdlidetioupled from P and SV
waves (Sten and Wysession, 2002). Now, ray parameter foriadwvidual plane wave is
computed according to equation (11) and used in equati@)s(id (13) in order to obtain
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FIG. 2. Schematic representation of unit normals to plane wave and tilted interface,the angle of
incidence 6; is the angle between normalp and a. x;, xo are the horizontal coordinate axis and x3
is the vertical axis.

R and T coefficients for dipping interface, respectively.

In line and cross line slices of R and T coefficients can beiobtausingp, = 0,
p1 = 0O,respectively. Recalling equation (11) fpy = 0, the ray parameter is the same
as horizontal slownesggs,;) in 2D case and fop; = 0 it would bep,. Further, in line and
cross line reflection and transmission coefficients can berdd using equations (12) and
(13) with differentg; andg, from the equations (14) and (15). These equations are déduce

and given as
0 (@) = /1= (o), (16)
q2 (ﬁ) = U%\/ 1- (v2p1)2, (17)

q (ﬁ) = l 1 - (U1p2)2a (18)

@ () = /1= () (19

2

and

for in line, and

and

for cross line.
For the zero slowness, the reflection and transmission ciaeffs are same for both in line
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and cross line cases and independent from the frequencge®re given as

Rgy = 21— P02 (20)
pP1U1 + P2U2
and 5
Ty = — P11 (21)
P1U1 + P22
respectively.
EXAMPLES

Now to explore the reflection and transmission coefficiehnge withp, andp,, an
example in whichy; = 1500m/s andvs = 2500m /s with same density across the reflector
is considered. Equations (12) and (13) are used to compeitetiection and transmission
coefficients. Figure 3 shows 3D real and imaginary part oéotithn and transmission co-
efficients, respectively. Presently, 512 in line and crosstraces are used for a particular
frequency, 40Hz. Here, horizontal reflector is used. Figuskows the in line and the cross
line slice of reflection and transmission coefficients that@sed on equations ((16) and to
(19)). At zero slowness, the reflected wave has an amplitu@&as predicted by equation
(20)), whereas the transmitted wave amplitude is 0.75. As hot@#@owness increases
to larger value, the amplitude of the transmitted wave iases and the reflected ampli-
tude approaches to zero. Recalling equation (12), the tefleamplitude would be zero
when horizontal slowness is equal tol/+/v? + v3 i.e 0.000343 s/m (see the appendix
for mathematical manipulation). Despite crossing a sigaift change in velocity, there is
no reflected wave for a plane wave at this horizontal slowndsle transmitted wave has
amplitude 1. Further, as slowness value increases lardkistslowness, the amplitude of
transmitted wave continues to increase. This amplitudeaotmitted wave increase due to
an increase in the horizontal orientation of the transmittave. At the critical slowness,
the transmitted wave would be horizontal. This implies thatvertical slowness in second
medium will be zero. According to equation (17), this occatrg, = 1/v, = .0004m/s. At
this value of slowness, the amplitude is 2 for the transihi8&l wave and 1 for reflected
wave. Beyond the critical slowness, there is no transmittade in lower layer ands
is imaginary in this situation. They are known as evanesa@nes and their amplitudes
decay with depth. Due to the imaginary vertical slowness rétflection and transmission
coefficients become complex beyond the critical slownesseQhe coefficients become
complex, the shape of reflected pulse and transmitted psils®dified (Kennett, 2001).
Following this theory, there will be a distortion of the refied and transmitted pulses at
p1 > 1/v, as depicted in Figure 4 . Same description can be used fos tnesslices of
the reflection and transmission coefficients.

Figure 5 shows the real and imaginary part of the 3D reflectiot transmission coef-
ficients when interface is dipping. In line and cross lineeslof the reflection and trans-
mission coefficients are shown in Figure 6. In Figure 6 theoregn between negative
and positive critical slowness, is shifted and not symroat@bout zero slowness. In this
figure the reflected and transmitted amplitudes are notngetthlues 1 and 2 respectively
at positive critical slowness. The reason of this discrepas the discussed in the next
paragraph.

The same number of in line and cross line traces are used byRr@sently, the number
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FIG. 3. a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient. c) Real part
of transmission coefficient. d) Imaginary part of transmission coefficient. 512 in line and 512 cross

line traces are used.
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FIG. 4. a) In line slice of reflection coefficient. b) Cross line slice of reflection coefficient. c) In line
slice of transmission coefficient. d) Cross line slice of transmission coefficient.
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FIG. 5. a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient. c) Real part
of transmission coefficient. d) Imaginary part of transmission coefficient for dipping interface.
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FIG. 6. a) In line slice of reflection coefficient. b) Cross line slice of reflection coefficient. c) In line
slice of transmission coefficient. d) Cross line slice of transmission coefficient for dipping interface.
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of in line traces is fixed and different number of cross lirecés are used in order to see
the effect of this change on the reflection and transmissi&fficients. Figures 7 and 8
are obtained with 512 in line traces and 128 cross line traths description for in line
slice of the reflection and transmission coefficients is samgiven previously. Here, the
cross line slices of the reflection and transmission coefitsi are considered. For cross
line slice, the reflected amplitude is -0.25 and transmidgtegblitude is 0.75 at zero slow-
ness(as predicted by the equations (20) and (21)). In tlsis, ¢he extracted reflected and
transmitted amplitudes are not as predicted by equatid®)safid (13) at critical slowness.
The reason is that there is no sample point in MATLAB at caitislowness in this case.
The sample rate depends on the number of traces inversely &n@.000019 s/m along
the slowness axis. In this case, near to the slow0e¥¥)343s/m) at which reflected am-
plitude is expected to be zero, the obtained slowness in M¥'Is 0.00035 s/m while the
occurred slowness near to critical slowness is 0.0004089 She obtained sample point
just before to 0.0004039 s/m is 0.00039 s/m. Now the intetpwi is used in MATLAB
to get the values at all the points in between two sample poitcording to theory, the
amplitude values of the reflected and transmitted wavesatttwo sample points are not
such that the expected result is obtained at critical sle@amsing interpolation, this is be-
cause, near to critical slowness, there is large differeeteeen the values of the reflected
and transmitted amplitude for closely sample points. Thlug to interpolation used by
MATLAB, the reflected and transmitted amplitudes are notiggtthe expected values at
critical slowness.

Figures 9 and 10 show the real and imaginary part of the 3Dctafleand transmission
coefficients, and in line and cross line slices of coeffigemth same input as previous but
for dipping interface(dip-15°), respectively. These figures show some shifting along-slow
ness axis and are not symmetric about zero slowness. Heliagiand cross line slices
show inconsistency in the reflected and transmitted ang@guat positive and negative
Nyquists. This is again attributed to the problem assodiati¢h MATLAB programming.

In programming, the negative Nyquist is used as per theorypbsitive Nyquist is taken
as the difference of the positive Nyquist and sample rates. Khown that sample rate de-
pends on the number of traces inversely. The less humbeacddrmeans coarse sample
rate and coarse sample rate means a considerable diffdyetveeen positive Nyquist and
negative. Thus, there is the difference in the values oféHeated and transmitted ampli-
tude occurring at the positive and negative Nyquists. Nbow,figures for the reflection
and transmission coefficients are drawn with same inpunpeters as previous model but
different number of cross-line traces. Presently, onlydsstline traces are used. Figures
11 and 12 demonstrate the obtained results for this caseaseeseen, in cross line slices
of the reflection and transmission coefficients, the refteataplitude and transmitted am-
plitude is -0.25 and 0.75 at zero slowness( as predicted bgtems (20) and (21)). The
values of the reflected amplitude and transmitted ampliaréedecreasing and increas-
ing respectively as slowness increases for the reflectetransimitted but in this case the
pattern of the reflection and transmission coefficientsffeing very much from expected
one . Here, the sample rate is 0.000312 s/m that is very codnitethe difference between
the critical slowness and the slowness at which reflectedifarde is zero, is .000057 s/m.
It shows that there is no point between these two slownedseeas there is big difference
occurred in the amplitudes at these slownesses. Preddi(lyf,AB uses the interpolation
to get the values of amplitude at the slownesses in betweesawple points. Thus, the
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FIG. 7. a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient. c) Real part
of transmission coefficient. d) Imaginary part of transmission coefficient for horizontal interface.
512 in line and 128 cross line traces are used.
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FIG. 8. a) In line slice of reflection coefficient. b) Cross line slice of reflection coefficient. ¢) In
line slice of transmission coefficient. d) Cross line slice of transmission coefficient for horizontal
interface
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FIG. 9. a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient. c) Real part
of transmission coefficient. d) Imaginary part of transmission coefficient for dipping interface.

CREWES Research Report — Volume 21 (2009) 15



Sharma et. al

gV
1 |"

‘ 1

-1 \ 1

1 0 1
Py (S/mM)ygs

FIG. 10. a) In line slice of reflection coefficient. b) Cross line slice of reflection coefficient. c) In line
slice of transmission coefficient. d) Cross line slice of transmission coefficient for dipping interface.
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FIG. 11. a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient. c) Real
part of transmission coefficient. d) Imaginary part of transmission coefficient for horizontal interface.
512 in line and 8 cross line traces are used.

obtained results are very far away from expected ones. TFigsees(13, 14) are for dip-
ping interface. In this case the cross-line slice gives thtoed picture of the amplitude
of the reflected and transmitted waves.

DISCUSSION AND CONCLUSIONS

The angle of incidence is obtained by using the cross praofugto known unit nor-
mals. This value of incident angle is used in analytic exgimess of R and T coefficients.
Thus,the reflection and transmission coefficients have betined in plane wave domain.
First of all reflection and transmission coefficients haverbebtained for the reflector
aligned with computational grid. Presently, it has beemshtihat obtaining reflection and
transmission coefficients for the reflector non-alignedwsmputational grid is easy. The
importance of this approach is the automatically adaptatfdR and T expressions to the
special dipping interface case. The power of this is thatayotracing is required. The
reflection and transmission coefficients obtained for sanmetyer of in line traces but dif-
ferent number of cross line traces, show the deviation filugreixpected one. It reveals the
problem associated with data acquisition and make it requo acquire the data correctly.
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FIG. 12. a) In line slice of reflection coefficient. b) Cross line slice of reflection coefficient. c) In
line slice of transmission coefficient. d) Cross line slice of transmission coefficient for horizontal
interface.
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FIG. 13. a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient. c) Real
part of transmission coefficient. d) Imaginary part of transmission coefficient for dipping interface.
512 in line and 8 cross line traces are used.
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FIG. 14. a) In line slice of reflection coefficient. b) Cross line slice of reflection coefficient. c) In line
slice of transmission coefficient. d) Cross line slice of transmission coefficient for dipping interface.
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Cross line slice does not show any effect of dipping interfacly in line slice does.
FUTURE WORK

1. Rayleigh Sommerfeld Modeling with AVO.

2. RSM for dipping interface.In this paper, only a speciaecaf dipping interface is
discussed here but in future | will try to solve the problenaajeneralized case of
dipping interface. For this the idea is to carry the infonm@bf polarization vector
of vector wavefield through the wavefield propagation. Bywimg the polarization
vector at the earth surface, this information can be catodtie reflector in wave-
field extrapolation. If reflector is dipping, then compute ttomponent of vector
wavefield in a rotated coordinate system that coincides difthing interface. Now
carry this information of vector wavefield back to the eaniface, and then rotate
coordinate system again. Anisotropic case will be considiér future.
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APPENDIX

TO FIND THE VALUE OF SLOWNESS AT WHICH REFLECTED AMPLITUDE
WOULD BE ZERO

From equation (12) reflection coefficieRk is zero when

PlU%Ch = PzUSCD, (A‘l)

Where, in this example, densify) is the same across the interface. Further, congtant
simplifies equation (A-1) so that

viq = 3¢s. (A-2)
Using equations (16) and (17), replageandq, in equation (A-2) to get
v (1= (nip1)?) = o3 (1= (vap1)?) (A-3)

where we have squared both sides.
Solutionp, for equation (A-3) corresponds to the ray parameter wiigye is zero,

1

P11 = —F/—
\Vv2 + v}

ENERGY FLUX FOR REFLECTED AND TRANSMITTED WAVES

(A-4)

Earlier it is seen that the transmission coefficent exceealsctitical slowness. The
energy transported by the traveling wave is consideredatew it occurs because energy
must be conserved. For a harmonic SH plane wave, the flux ofgper unit wavefront,
E, in the direction of propagation is the product of the enatgysity(energy per unit area)
and the velocity (Sten and Wysession, 2002)

E = A%*pB/2 (A-5)

whereA is the amplitude of wave andis the density of medium. Since welded contact of
two medium is considered, there is no energy to be accunuldatée interface. According
to law of energy conservation, energy flux of the incident evaxould be equal to the
reflected and transmitted waves energy fluxes. Energy floxdbé constituent waves are

E; = w?p1 3y cos jidz/2, (A-6)
for the incident SH wave
Er = Ryw’p1 B cos jidx /2, (A-7)
for the reflected wave, and
Er = T§5w?pafa cos jad /2, (A-8)

for the transmitted wave,where an incident wave has unitituidp, dzx is the element of
the interfacey,, j, are the angle of incidence and transmission, respectiValgse fluxes
satisfy the conservation of energy

Er=Ep+ Er, (A-9)
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and this expression can be written in terms of the incidefiected and transmitted energy
fluxes as

p151 cos ji = Ry p1 31 cos ji + Ty pafa cos ja, (A-10)
In terms of the vertical slowness, equation (A-10) is

P1512Q1 = R%leﬁfth + TngzﬁgCIz, (A-11)

It is seen from in line and cross line slices of the R and T coiefiits (Figure 4), at zero
slowness the reflection and transmission coefficients a2& #hd 0.75, respectively, while
density is the same across the boundary and velogitd$00m/s and’,=2500 m/s are
used. To verify this result in terms of energy conservatigrandg, are replaced by/3;
and1/f3,,respectively at zero slowness (normal inciden¢es0 andj, =0), and equation
(A-11) becomes

2 ﬁQ

b

Using the value of variables used in above equation welget (—0.25) + (0.75)? *
2500/1500 from equation (A-12) and it reveals that energy is conseatetkro slowness.
Now we consider the critical slowness case where reflectedtrmmsmitted amplitudes
are 1 and 2, respectively. To verify this result the vertglalvness in mediun, ¢, is
zero(j; = critical andj, = 7/2). Recalling the equation (13), the transmission coefficien
goes to 2 as slowness approaches the critical value butdiocgaio equation (A-8), the
energy of the transmitted wave vanishes at this slownessiseavavefront factafosj, is
vanished here. Thus, energy is conserved here also.

(A-12)
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