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Reflection and transmission coefficients in TI media: exact and 
linearized phase velocities, eikonals and polarization vectors 

Patrick F. Daley, Edward S. Krebes, and Lawrence R. Lines  

ABSTRACT 

Reflection and transmission coefficients which partition energy due to plane wave 
incidence at the interface between two transversely isotropic ( )TI  media are considered.  

The basic forms of these coefficients employed use expressions for certain quantities that 
may be classified as either exact or linearized. Phase velocities and the related slowness 
vectors, as well as the polarization vectors for the incident and the four possible reflected 
or transmitted wave types, are investigated for both levels of accuracy mentioned above. 
Computed results for these precision types should be compared graphically for what has 
been termed weak anisotropy ( )WA . However, liberties will be taken and at least one of 

the media will be chosen to be strongly anisotropic, to determine the possible limits of the 
degree of anisotropy which may be considered without a major compromise of results.  
The results suggest that the degree of anisotropy, for which the linearized quantities are 
assumed to provide reasonably accurate results, may be larger than that typically 
associated with “weakly anisotropic” media.  A full sensitivity study is not done here as 
the prime motivation for this work was to develop the linearized formulation of reflection 
and transmission coefficients, given that the exact solutions are known. This is one of the 
motivations for undertaking this study, as a linearized algorithm  to determine reflection 
and transmission coefficients for more complex anisotropic media is a future objective.  

INTRODUCTION 

In the past several decades, the study of elastic wave propagation in complex 
anisotropic media types has produced necessary supplements to seismic prospecting tools 
related to the detection of hydrocarbons in geological structures. Methods have been 
pursued to minimize the mathematical complexity of the formulae involved while still 
preserving a reasonable level of accuracy. One of these, perturbation theory, has been 
shown to be a useful tool for the study of wave properties in complex weakly anisotropic 
media. Formulae for kinematic quantities such as phase velocity and dynamic properties 
like polarization vectors take on forms which are only moderately more complicated than 
those for isotropic media, using just a first order approximation (Jech and Pšenčík, 1989,  
Sayers, 1994, Mensch and Rasolofosaon, 1997, Pšenčík and Gajewski, 1998, Pšenčík and 
Farra, 2005, and Farra and Pšenčík 2008).  

 In the paper by Farra and Pšenčík (2003) the extension of perturbation methods to 
obtain higher order approximations for the phase velocity and polarization vectors for 
waves of all three types (quasi-compressional, qP , and the two coupled quasi-shear wave 

modes, 1qS  and 2qS ) were discussed. The papers cited in the previous two paragraphs 
are a sampling rather than an exhaustive list of works on this topic. Readers are directed 
to the above where other references may be found. 
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The basic premise of perturbation theory involves starting with some reference 

velocity, often an isotropic background velocity, and perturb it as ijkl ijkl ijkliso
a a a = + Δ  , 

where the ijkl iso
a    are just the isotropic equivalents of the anisotropic parameters ijkla , 

with anisotropy introduced through the addition of the ijklaΔ  terms. The density 

normalized anisotropic parameters, ijkla  and ijklaΔ , have the dimensions of velocity 

squared, so that ijkl ijkla c ρ= ,  with ijklc  being the stiffness coefficients of the medium, 

and ρ  being the density (Červený , 2001). Once established, this approximation may be 
introduced into the equations for elastic wave propagation in anisotropic media and 
manipulated in a standard manner (Jech and Pšenčík, 2008, as an example) starting with 
substituting ijklc  into the equations of particle motion as 
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ijkl ijkiso
i i

uu u
c c

x x x x t
ρ

∂   ∂ ∂∂ ∂  + Δ − =    ∂ ∂ ∂ ∂ ∂   


 

 (1) 

Assuming the zero order asymptotic ray series solution for (1) to be  

 
( ) ( ) ( )( ), expi i ix t x i t xω τ = − − u U

, (2) 

in terms of the slowness vector components jp  ( ), 1, 2,3j jp x jτ= ∂ ∂ = , the following 

identity results 

 
0ijk i k ja p p U U− =   (3) 

with ijkl ijkl ijkl ijkliso
a c a aρ  = = + Δ  . Time is indicated by " "t , circular frequency as " "ω , 

the coordinate dependent phase function which describes a wave fronts propagation 

through a medium as ( )" "jxτ  and ( )1 2 3, ,U U U=U  the displacement vector. 

Alternatively, equation (3) may be written as 

 ( )( ) ( ), 0 with ,jk jk k jk ijk ix p U x p a p pυ υ υ υδΓ − = Γ =   , (4) 

so that (4) in terms of the polarization vector has the form 

 ( ), 0jk jk kx p G gυ υ δ Γ − =  . (5) 

The Christoffel matrix ( ),jk x pυ υΓ  is symmetric and positive definite (Červený , 

2001). Thus for any direction of the wave vector in , which is normal to the qP  wave 

surface, ( ),jk x pυ υΓ  has three positive and real eigenvalues ( )1 1, 2,3Gζ ζ= =  and three 

corresponding unit eigenvectors ( )inζg  which satisfy the system of equations (5). 
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Two eigenvalues 1G  and 2G , with related eigenvectors 1g  and 2g , correspond to the 

two qS  waves, and the remaining eigenvalue 3G , with the eigenvector 3g , is associated 

with the qP  wave. The eigenvalues are related to the squares of corresponding phase 

velocities ( ),i iv x nζ  as ( ) ( )2 , 0 1, 2,3i iG v x nζ ζ ζ− = =  where the relationship 

( ),i i j jp n v x nζ=  has been introduced. The above requires that a modified definition of 

jkΓ  be used, so that ( ),jk jk x nυ υΓ = Γ . The parameter list for jkΓ  will be retained 

throughout to avoid any confusion, unless the notation is especially clear. 

The eigenvectors mg  specify polarization vectors of the corresponding waves. The 

eigenvalues 1G  and 2G  have in general, for most geological media, magnitudes less than 

3G  (Schoenberg and Helbig, 1997). 2G  will not be used here as in the TI  case it 

corresponds to the 
VqSG  wave which in a TI  medium is decoupled from the coupled 

wave type pair qPG  and 
VqSG . Its polarization vector is aligned normal to the plane of ray 

propagation. 

In perturbation formulas of any order, an important role is played by a 
matrix, ( ) ( ), , 1, 2,3mnB x n m nυ υ = , whose elements define various attributes of elastic 

wave propagation, and which is used to obtain other related expressions. Explicit 
expressions for the elements for one of various possible specifications of the matrix 

( ),mnB x nυ υ  used in the literature that are required here, are given in Voigt notation of the 

anisotropic parameters ( ), 1, 2, ,6ijA i j =  . The anisotropic parameters, ijA , are related to 

more general anisotropic parameters ijka   (see for example Gassmann, 1964, page 98)) 

and have the dimensions of velocity squared. 

Initially three mutually orthogonal unit vectors are introduced 

 ( ) ( )1 2 3, , 1, 2,3i i i ie e e i= =e
. (6) 

The vectors n , 1e  and 2e , the relationships of the general components of the ie  to the 

components of the vector n  and their degenerate TI  forms, are specified in terms of the 
polar angle, θ , and the azimuthal angle, φ , as 

 

( ) ( )
( )

( ) ( ) ( )

3 31 32 33

1 2 3

3 31 32 33

, , sin cos ,sin sin ,cos

, ,

, , sin ,0,cosTI TI

e e e

n n n

e e e

θ φ θ φ θ

θ θ

= = =

=

= = =

n e

n

n e

 (7) 
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where 3 =e n , ( )1 22 2
1 2D n n= + , 2 2 2

1 2 3 1n n n+ + =  and the vectors 1e  and 2e  specify a plane 

normal ton . (Figure 1).  As these two vectors may be chosen arbitrarily, it will be 
required that n  and 1e  define the plane in which the rays, which transport energy from 
one point in a medium to another, are located in a transversely isotropic medium. Due to 
the rotational invariance of a TI  about the vertical, 3x  axis, this plane may be taken at 

any azimuth. Consequently, the azimuthal angle, 0φ =  has been chosen for use here.  

The definition of the matrix mnB  used here is defined as 

 ( ) ( ) ( ), , with ,mn jk mj nk jk ijk iB x n x n e e x n a n nυ υ υ υ υ υ= Γ Γ =   . (10) 

It is clear that the vectors ie  rather than slowness vectors are used here to define a matrix 

( ),mnB x nυ υ  due to the difference in definition of  ( ),jk jk x nυ υΓ = Γ  above and that given 

in equation (4).  Development of analytic expressions for individual terms of the matrix 
( ),mnB x nυ υ  will be introduced as required in later sections. 

It should finally be noted that Backus (1965) presented the linearized form of the 
square of the quasi – compressional ( )qP  phase velocity in a general anisotropic 

medium, which may be seen to be equal to ( )33 ,B x nυ υ , as 

 ( ) ( )2 , ,qP ijk i j k jk j kv x n a n n n n x n n nυ υ υ υ= = Γ  , (11) 

where, ( ),jk x nυ υΓ  is the form of the Christoffel matrix specified by (10). 

THEORY 

The paper by Graebner (1992) presents a matrix formulation of the problem of plane 
wave incidence at the interface between two transversely isotropic media. When solved, 
the 16 possible reflection and transmission coefficients result. That paper was initially 
used as the effect of the polarization vectors on the matrix elements may be seen quite 
clearly. The closed form solution of the matrix equation presented in that paper was 
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derived in a subsequent unpublished work by the authors; the resulting analytic 
expressions for the coefficients were left in forms that were not fully developed so that 
the effects of the polarization vector components on individual coefficients could be 
analyzed at a later time. 

The intent of this work is to compare the reflection and transmission coefficients for 
two of the most widely used coefficients, 1 1P PR  and 1 1P SR , when linearized quantities are 

introduced to replace the exact polarization vector components. For consistency, 
linearized phase velocities and eikonals are also incorporated. Expressions for the exact 
polarization vectors were taken from Daley and Hron (1977), and were with minor 
changes introduced into the computer code that resulted from the solution of the 
equations given in Graebner (1992). The linearized forms of the polarization vectors will 
be discussed in due course. The incident (upper) medium is highly anisotropic, and the 
lower medium is chosen to be isotropic so that any anisotropic effects are due to the 
anisotropy in the upper medium. 

As a reference point, the exact expressions for the polarization vectors, 
VqP qSg , related 

to the coupled VqP qS−  wave propagation in an isotropic medium, may be written as 

 ( )sin , cosς ς ςθ θ= ±g  (12) 

where ς  is either ( )"0 " " "n or n  with n = 1,2,3,4 and the perturbed expression due to the 

introduction of anisotropy is of the form 

 ( ) ( )1 3, sin , cosg gς ζ ζ ς ς ςθ θ= = ± + Δg g . (13) 

The subscript ς  indicates an incident wave type if it is the form ( )O n , where 1n =  

refers to a qP  wave in the upper (1) medium, 2n =  to a VqS  wave in the upper (1) 

medium, 3n =  to a qP  wave in the lower (2) medium, and 4n =  to a VqS  wave in the 

lower (2) medium (Figure 2). The notation ( )O j  indicates an incident wave type at the 

interface. 

In the somewhat more complex transversely isotropic ( )TI  medium the polarization 

vectors have the exact form (Daley and Hron, 1977) 

 ( ) ( )( ) ( ) ( )( )1 3 1 3, , ,
V V VqP qSqP qP qS qSg g g g= =g g

 (14) 

where 

 
( )

( )

( )

( )1 2 1 2

1 1,
2 2qP qP

Q A Q A
g g

Q Q
α α

− −   + −= =   
       . (15) 

and 
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[ ]

2 2
1 2 1 22 2 2 1 3

1 3 2
4 1 4 , D

D D D

A p p
Q A A p p A

Aα α
α

η η = + = + = 
. (16) 

Quantities requiring definition are 

 
( ) ( ) ( )2 2

11 55 1 33 55 3A A A p A A pα
− = − − −

 (17) 

and 

 ( ) ( )2 2
11 55 1 33 55 3A A A p A A pα = − + −

. (18) 

with the deviation from the elliptical case given by 

 ( ) ( )( )2

11 13 11 55 33 55DA A A A A A A= + − − −
. (19) 

Its dimensionless form is 

 

( ) ( )( )
( )

2

11 13 11 55 33 55

33 33 552D

A A A A A A
A

A A A
σ

+ − − −
= =

−


, (20) 

and in terms of Thomsen’s (1986) ( ),ε δ  notation, σ δ ε= − , with the dimensionless 

ellipticity defined as ( )11 33 332A A Aε = − . The slowness vector related to a certain mode 

of wave propagation, γ , is ( ) ( )1 3 1 3,0, ,p p p pγ γ γ γ γ= =p , ( )or VqP qSγ = . It should be 

noted that the components of the vectors ζg  have been defined only accurate to within a 

±  sign. This fact may be seen more clearly in Figure (2) , which has been redrawn from 
Daley and Hron (1977). 

Figure (2) displays the orientations of all components of all the polarization vectors 
that could exist at a plane interface between two TI  media for the problem being 
considered here. It should be noted that sin 0γθ ≥  for all wave types, if the angle of the 

incident wave is such that ( )0 2O nθ π≤ ≤  where ( )O nθ  being collinear with the vertical, 

3x , axis corresponds to ( ) 0O nθ = . 

The formulae for the polarization vectors 
VqSg  appear to be the same as for qPg , 

however, the slowness vectors p  are different for qP  and VqS  wave type propagation in 

the same medium, and the polarization vectors are functions of these. This is discussed 
later. 

Taking the paper of Farra and Pšenčík (2003) as an example, the components of the 
linearized qP  polarization vector in a general anisotropic medium may be written as 
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( ) 13 1 23 2

33 11 33 22

i i i
qP j i

B e B e
g n n

B B B B
= + +

− −  (21) 

In a TI  medium, 23 0B =  (Pšenčík and Gajewski, 1998), so that  

 

1 113 11 13
1

33 11 33 11

cos
sin sinqP qP

B e B
g n g

B B B B

θθ θ= + = + = + Δ
− −  (22) 

 

3 313 13 13
3

33 11 33 11

sin
cos cosqP qP

B e B
g n g

B B B B

θθ θ= + = − = − Δ
− −  (23) 

In the initial derivation of the above formulae the quantities 33 11andB B  were taken to 

be related to the isotropic and VqP qS  background velocities andα β , as 2
33B α=  and 

2
11B β= , respectively (Pšenčík and Gajewski, 1998). In the above, the vectors n  and 1e ,  

and their degenerate TI forms were previously defined in equations (7) –(9). 

As discussed earlier, it can be seen that ( )3TI TI
=n e  and ( )1 TI

e  are an orthonormal 

vector couple in the ( )1,3  plane. If the vector 2e  is considered, the vector triplet 

( ) ( )1 2 3 1 2, , , ,=e e e e e n  is an orthonormal basis vector system in 3 dimensions. The vector 

n  is often referred to as the phase or normal angle vector associated with the qP  wave 
propagation in an anisotropic medium, (Figure 2). 

As previously indicated, the quantities mnB  are defined by the relations 

 
withmn jk mj nk jk ijk iB e e a n n= Γ Γ =   . (24) 

The elements of the tensor ijk ijka c ρ=   are anisotropic coefficients defined in terms 

of the stiffnesses of a medium, ijkc  , and density, ρ  , which have equivalents in Voigt 

( )ijA  notation having dimensions of velocity squared, as previously mentioned. For a TI  

medium the relevant ( )11 33 13, ,mnB B B B   may be written as 

 
2 2

11 55 13 sin cosB A E θ θ= −  (25) 

 
2 2 2 2

33 11 33 13sin cos sin cosB A A Eθ θ θ θ= + +  (26) 

 
( ) ( )2

13 11 33 13

sin cos
1 2sin

2
B A A E

θ θ θ = − + −   (27) 

Here 33B  and 11B  may be seen (see Pšenčík and Farra, 2005, as an example) to be the 

squares of the linearized qP  and VqS  phase velocities, and the deviation from the 

elliptical in the linearized case is defined as  
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 ( ) ( )13 13 55 11 332 2E A A A A= + − +
 (28) 

which is the complement of the anellipticity, DA , in the general formulation, and is given 

by equation (19). 

The VqS  equivalents of (22) and (23) are 

 

1 113 3 13
31

33 11 33 11

cos
sin sin

V VS S

B n B
g e g

B B B B

θθ θ= + = − + = − + Δ
− −  (29)  

 

3 313 1 13
11

33 11 33 11

sin
cos cos

V VS S

B n B
g e g

B B B B

θθ θ= + = + = + Δ
− −  (30) 

(In the above the superscripts on the polarization vector components are defined to be 
consistent with those implied in Figure 2.) There remains a final matter to be considered 
before the above expressions may be incorporated into software for the computation of 
reflection and transmission coefficients. The exact and linearized cases discussed above 
have different forms of the eikonal equation for both the qP  and VqS  waves. The eikonal 

equations are functions of the components of the slowness vector ( )1 3,p p=p . As it is 

assumed that the horizontal component, 1p , of the slowness vector is known, it remains to 

determine the vertical component of the slowness vector 3p . In both cases, the solutions 

for 3p  are in terms of the anisotropic parameters of the medium, and 1p . The 3p  are 

solutions of quartic equations which are homogeneous in powers of 2
3p , given by   

 
2

1 1 2 04 2
2 3 1 3 0 3

4
0,

2

K K K K
K p K p K p

− + −
+ + = =  (31) 

for the linearized case the where the coefficients ( )0,1, 2iK i =  are 

 ( ) ( )
2 33

2 2
1 11 33 1 13 1

4 2
0 11 1 1

1

K A

K A A p E p qP

K A p p

=

= + − −

= −

 (32) 

and 

 ( )
2 55

2 2
1 55 1 13 1

4 2
0 55 1 1

2 1 V

K A

K A p E p qS

K A p p

=

= − −

= −

 (33) 

In the exact case the quartic solution is  
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( )

2
1 1 2 0

3

4
" " , " "

2 V

K K K K
p qP qS

− −
= − +



 (34) 

with 

 

( ) ( ) ( )
( )

2 33 55

2 2
1 55 11 33 1 1 33 55

4 2
0 11 55 1 11 55 1

2 and

1

D V

K A A

K A A A p A p A A qP qS

K A A p A A p

=

= + − − +

= + − +  (35) 

NUMERICAL RESULTS 

A two layered model consisting of a highly anisotropic transversely isotropic 
halfspace overlying an isotropic halfspace was considered to produce numerical results. 
The anisotropic parameters defining these two media are given in Table 1. The upper 
medium has anisotropic parameters similar to the ( )1 3−  plane of olivine. It is assumed 

that in both media the invariant rotational axes are normal to the plane interface 
separating the media. The use of the isotropic lower halfspace was chosen so that 
parameters of the upper halfspace dominate the anisotropic effects seen in the graphical 
displays. The qP  and VqS  ray (group) velocity and slowness surfaces for the upper 

medium are shown in Figure (3). These surfaces were computed using their exact 
parameterization. The VqS  critical angle in the upper medium is 23 degrees≅ . 

Before proceeding, it may be instructive to compare the qP  and VqS  polarization 

vector components for the exact and linearized cases. The real parts of these vector 
components are displayed in Figures (4) and (5); the imaginary parts being zero. The two 
components of the qP  polarization vector are shown in Figure (4), plotted versus the 

waveqP − incident phase angle which varies from 0 to 90 degrees. Similar results for the 

VqS  polarization vector are shown in Figure (5) over the range of VqS  (sub-critical) 

phase angles from 0 to 23 degrees, The inputs to both the exact and linearized programs 
require that the horizontal component of the slowness vector be known. This is computed 
independently in each program. In all four panels in these figures, the black line refers to 
the exact solution, the grey line to the linearized solution, and the dotted line to the zero 
order solution, either sinθ  or cosθ . More detail may be found in the figure captions. 

The amplitude and phase of the exact and linearized reflection coefficients, 1 1P PR  and 

1 1P SR , are displayed versus the qP  - wave phase angle of incidence in Figures (6) and 

(7). As before, the black lines refer to the exact case, and the grey lines to the linearized 
formulation. Finally, the amplitude and phase of the 1 1P SR  reflection are plotted against 

the ray (group) angle of incidence in the upper medium in Figure (8). The effect of the 
triplication of the VqS  wave surface is quite evident in this plot. Further, the closeness of 

fit between the exact and linearized solutions is better than could be expected. 
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As a final example the 1 1S SR  reflection coefficient is considered. In a manner similar 

to the 1 1P PR  instance, the linearized and exact polarization vectors of the incident/ 

reflected VqS  wave are compared. The two components of these quantities are displayed 

in Figure (9) together with the zero order components ( )sin ,cos
V VqS qSθ θ .  Further 

discussion is given in the figure captions. The amplitude and phase of the exact and 
linearized reflection coefficient 1 1S SR , are displayed versus the VqS  - wave phase angle of 

incidence in Figure (10). Again, for comparative purposes the exact and linearized, 
amplitudes and phases, are shown in Figure (11), plotted against the ray (group) 
incident/reflected angle. As might be expected from viewing Figure (3), the difference 
between the amplitudes and phases of the exact and linearized forms of 1 1S SR  are more 

pronounced in this example. 

CONCLUSIONS 

Given software that computes the exact reflection and transmission coefficients at an 
interface between two transversely isotropic media, additional software consisting of 
linearized phase velocities, eikonal equations and polarization vectors may be obtained 
and introduced into a similar program. This was undertaken as a preliminary exercise 
before addressing more complex situations such as reflection and transmission 
coefficients at the interface between two orthorhombic media to obtain some indication 
of any major problems that may arise. These linearized quantities are obtained using 
perturbation theory, and their range of validity should only include what has been termed 
“weak anisotropy”. From the small numerical experiment presented here it could be 
concluded that this constraint could be exceeded.  However, much more numerical testing 
should be done before any generalizations are made. The results obtained here provide 
enough incentive to extend this method to more complex anisotropic media types, 
specifically, orthorhombic symmetry. If the weak anisotropic limitation is imposed and 
adhered to, it may be supposed that the results obtained should be of reasonably accuracy. 

 

Layer      A11      A33       A55       A13      AD  ÃD = σ        ε  ρ 
   1 14.8246 12.2080  1.3059  6.7032 -83.236  -0.3127 0.1071 2.0 
   2     25.0     25.0     7.4       10.2      0.0      0.0            0.0 2.2 
 
Table 1. Anisotropic parameters, ijA , used in computing the reflection coefficients. The 

units of all of these parameters is velocity squared ( )2 2km s except for DA  ( )4 4km s  and 

the ellipticity, ε , and the measure of anellipticity, DA σ= , which are dimensionless. The 

linearized anellipticity parameter, 13E , has the value for  layer 1 of 2 28.4026km s− . In a 

dimensionless form, 13 13 332E E A= , the value is -0.3441. The densities, ρ , are in 
3gm cm . 

 
 



Linearized Reflection Coefficients in TI media 

 CREWES Research Report — Volume 22 (2010) 11  

REFERENCES 

Backus, G.E., 1965, Possible forms of seismic anisotropy of the uppermost mantle under oceans, Journal of 
Geophysical Research, 70, 3429-3439. 

Červený, V., 2001, Seismic Ray Theory: Cambridge University Press, Cambridge. 
Daley, P.F. and Hron, F., 1977, Reflection  and transmission coefficients for transversely isotropic media, 

Bulletin of the Seismological Society of America, 64, 954-962. 
Farra, V., and Pšenčík, I., 2003, Properties of the zero-, first- and higher-order approximations of attributes 

of elastic waves in weakly anisotropic media: Journal of the Acoustical Society of America, 114, 
1366-1378. 

Farra, V. and Pšenčík, I., 2008, First-order ray computations of coupled S waves in inhomogeneous weakly 
anisotropic media, Geophysical Journal International, 173, 979-989. 

Gassmann, F., 1964, Introduction to seismic travel time methods in anisotropic media, Pure and Applied 
Geophysics, 58, 63-113. 

Graebner, M., 1992, Plane-wave reflection and transmission coefficients for a transversely isotropic solid, 
Geophysics, 57, 1512-1519. 

Jech, J. and Pšenčík, I., 1989,  First – order perturbation method for anisotropic media, Geophysical Journal 
International, 99, 369-376. 

Mensch, T. and Rasolofosaon, P., 1997, Elastic wave velocities in anisotropic media of arbitrary anisotropy 
– generalization of Thomsen’s parameters ε , δ  and γ , Geophysical Journal International, 128, 

43-64. 
Pšenčík, I. and Farra, V., 2005, First – order ray tracing for qP waves in inhomogeneous weakly anisotropic 

media, Geophysics, 70, D65-D75. 
Pšenčík, I. and Gajewski, D., 1998. Polarization, phase velocity and NMO velocity of qP waves in arbitrary 

weakly anisotropic media, Geophysics, 63, 1754-1766. 
Sayers, C.M., 1994, P – wave propagation in weakly anisotropic media, Geophysical Journal International, 

116, 799-805. 
Schoenberg, M., and Helbig, K., 1997, Orthorhombic media: Modeling elastic wave behavior in a vertically 

fractured earth: Geophysics, 62, 1954-1974. 
Thomsen, L., 1986, Weak elastic anisotropy, Geophysics, 51, 1954-1966. 
 
 
 
 

ACKNOWLEDGEMENTS 

The support of the sponsors of CREWES is duly noted. The first author also receives 
assistance from NSERC through operating and strategic grants held by Professors E.S. 
Krebes, L.R. Lines and G. F. Margrave. 

 
 
 
 
 
 
 
 
 
 



Daley, Krebes & Lines___________________________________________________________ 

_____________________________________________________________________________ 
12  CREWES Research Report — Volume 22 (2010) 

 

 

FIG. 1. Orthonormal triad of vectors ( )1 2 3e ,e ,e = n . The choice of the orientation of the 

orthonormal vector pair ( )1 2e ,e  which spans a plane normal to 3e = n  is arbitrary. However, for 

the problem being considered here, 1e  has been chosen to be oriented in such a manner that it 

and 3e = n  form the plane of ray propagation for a transversely isotropic medium. This 

degenerate arrangement allows the angle φ  to also be arbitrary. Consequently, it is chosen 

equal to zero so that 2e  is normal to the ( )1 3e ,e  plane and can be taken to describe the 

direction of particle displacement of the HqS  wave. 
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FIG. 2. The geometry of the 4 types of incident wavefronts at an interface between two 
transversely isotropic media together with the 4 possible reflected and transmitted wave types. 

The subscripts ς  on ςθ  and igς  indicates an incident wavefront type if it is the form ( )O n , 

where 1n = refers to a qP  wave in the upper (1) medium, 2n =  to a VqS  wave in the upper (1) 

medium, 3n =  to a qP  wave in the lower (2) medium and 4n =  to a VqS  wave in the lower (2) 

medium. The orientations of the vector components 1gς  and 3gς  are the same as those used in 

both program types – exact and linearized. It should be noted that the positive direction of the 
vertical axis has been chosen upwards. 
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FIG. 3. Plots in the polar domain of the slowness and ray surfaces of the qP  and VqS  wave  

types of the upper medium. The dimensions of the markers on the slowness surfaces plots are 

s km  while those for the ray surfaces are km s . It is clear from viewing these surfaces that the 

medium chosen is not what could be classified as weakly anisotropic. This model is specified by 

using a slight modification of the anisotropic parameters defining the ( )1,3  plane in olivine. 
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FIG. 4. A comparison of the real parts of the vector components 1
qPg  (top) and 3

qPg  (bottom) for 

the reflected qP  wave type plotted versus the reflected qP  phase angle for the 1 1P PR  reflection 

coefficient. The imaginary parts of these two quantities are zero. The exact cases are plotted in 

black, the linearized cases in grey, and the reference curve, either sin qPθ  or cos qPθ , is shown 

by the dotted line. 
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FIG. 5. A comparison of the real parts of the vector components 1
qPg  (top) and 3

qPg  (bottom) for 

the reflected VqS  wave type, due to qP  wave incidence in the upper medium, plotted versus the 

reflected VqS  phase angle. As mentioned in the text, the imaginary parts of these two quantities 

are zero. The exact cases are plotted in black, linearized in grey, and the reference curve, either 

sin
VqSθ  or cos

VqSθ , is shown by the dotted line. As grazing incidence of the qP  wave 

corresponds to 23 degrees
VqSθ ≅ , the upper bound for the VqS  phase angle axes in this case is 

23 degrees . The fit of the exact with the linearized case is not as good here as in the qP  case in 

the previous figure, and the deviation of both from the zeroth order curves is also greater than in 
figure 3. There is no immediate explanation for this. 
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FIG. 6. The reflection coefficient 1 1P PR  due to a qP  plane wave incident from the upper medium. 

The amplitude and phase of the reflection coefficient is plotted against the incident qP  phase 

angle. The media parameters are those given in Table 1. As in previous figures, the black line 
corresponds to the exact case, grey to the linearized case. 
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FIG. 7. The reflection coefficient 1 1P SR  due to a qP  plane wave incident from the upper medium. 

The amplitude and phase of the reflection coefficient is plotted against the incident qP  phase 

angle. The media parameters are those given in Table 1. The black line corresponds to the exact 
case, grey to the linearized case as in previous figures. 
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FIG. 8. The reflection coefficient 1 1P SR  due to a qP  plane wave incident from the upper medium, 

where the amplitude and phase is plotted versus the incident qP  group angle. As is clear from 

the plotted curves, this was done as another check of how well the exact and linearized reflected 

VqS  amplitudes and phases of the exact and linearized cases matched. Again, the exact curves 

are black and the linearized curves are grey. 
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FIG. 9. A comparison of the real parts of the vector components 1

VqSg  (top) and 3

VqSg  (bottom) for 

the reflected VqS  wave type plotted versus the reflected VqS  phase angle for the 1 1S SR  

reflection coefficient. The imaginary parts of these two quantities are zero. The exact cases are 

plotted in black, the linearized cases in grey, and the reference curve, either sin
VqSθ  or cos

VqSθ , 

is shown by the dotted line. 
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FIG. 10. The reflection coefficient 1 1S SR  due to a VqS  plane wave incident from the upper 

medium. The amplitude and phase of the reflection coefficient is plotted against the incident VqS  

phase angle. The media parameters are those given in Table 1. The black line again corresponds 
to the exact case and grey to the linearized case. 
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FIG. 11. The reflection coefficient 1 1S SR  due to a VqS  plane wave incident from the upper 

medium where the amplitude and phase is plotted versus the incident VqS  group angle. As is 

clear from the plotted curves, this was done as an extra check of how well the exact and 

linearized reflected VqS  amplitudes and phases of the exact and linearized cases matched. The 

exact curves are black and the linearized curves are grey. 

 

 


