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ABSTRACT

In 2008, the Priddis pump-probe experiment, in which the Earth was simultaneously
subjected to a vibrating source and a transient source, was carried out by CREWES with
the hope of detecting nonlinear behaviour in an exploration seismology setting. In this
paper we present a theoretical description of such behaviour, assuming an acoustic medium.
Through a simple extension of the order arguments by which fluid equations are typically
manipulated to form a linear wave equation on the pressure p1, we find a nonlinear equation
for a corrective term, p2, such that in total the field, p = p1 + p2, is aware of the changes it
itself makes in the medium through which it propagates.

INTRODUCTION

In 2008, CREWES researchers carried out and presented a discussion of the “Priddis
pump-probe experiment” (Margrave et al., 2008), in which an Earth volume was simul-
taneously subjected to a strong vibrating source and a transient source. The point was to
determine whether the Earth property variations induced by the vibrating background field
would be of sufficient amplitude to alter the transient experiment, creating a different re-
sponse than would have been generated had the transient experiment occurred in a quiet
background.

At heart, this is a question of the presence or absence of nonlinear phenomena in explo-
ration seismology as we carry it out today. Whether or not, that is, seismic waves influence
themselves, scattering from each other and altering their own amplitudes (Figure 1), and
whether or not such phenomena could conceivably rise above the noise level in our records.
From a theoretical point of view, the idea is far from outlandish. Since “normal” seismic
waves—which pass each other like ships in the night—are predicted by equations of motion
that have been explicitly linearized, it is, in principle, only a matter of the low amplitude of
non-linear seismic phenomena, rather than some fundamental issue, that best explains their
current absence. This invisibility may or may not last. Ongoing advances in instrument
sensitivity, survey design, and processing methods, in particular coupled with a newfound
interest in recording seismic data from shots set off simultaneously (Beasely, 2010), sug-
gest that a theoretical description of the non-linear interaction of seismic wave fields would
be a timely contribution.

In this note we derive a simple acoustic description of interacting seismic waves—we
make the ships, in other words, if not collide then at least pass each other during daylight
hours. This is a starting point only. To validate it as a theory, we must next analyze the
resulting equations and predict data variations which match with the results of experiment
like that of the Priddis pump-probe. Since the results of that experiment were reported as
ambiguous, we all appear to have some work left to do.

The only other theoretical work on nonlinear seismology recently reported in our com-
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FIG. 1. Seismic waves alter the density and moduli of the Earth as they pass. In principle this means
that two incident seismic fields might be seen to scatter from each other. Indeed the amplitude of
a local portion of the seismic wave should be expected to influence itself, if its amplitudes are large
enough. But if a wave, which depends on the properties of the medium it is in, changes those
properties wherever it actually exists, how do you start the problem?

munity (that we are aware of) is that of Chesnokov et al. (2009); it is not fully clear to
us how the work of those authors relates to what is presented here, beyond that they have
a very different superficial appearance. Beyond this, nonlinear models have been used to
describe certain narrow seismic phenomena. For instance in the 1960s there was some
consensus that anelastic losses were likely due to nonlinear constitutive relations (Kolsky,
1953; White, 2000); this consensus is nowhere to be seen now, perhaps because of the suc-
cess of linear models, or perhaps instead because nonlinear models are more difficult to
analyze. The approach we have taken is specifically designed to allow the nonlinearity to
be expressed in terms of linear waves that are modified by a secondary field which overlays
it. Beyond that, the theory here will have to distinguish itself from any others in the clarity
with which it makes interpretable and measurable predictions.

As a starting point we adopt the basic framework of Landau (see, e.g., pp 1-6 & 245-246
of Landau and Lifshitz, 1959), which appears to have been used to good effect in deriving
linear wave equations and solutions by De Santo (1992). If, instead of doing what we are
about to do, one were to linearize the constitutive relations to follow, and treat only first-
order variations in the field variables, the linear acoustic wave equations described by these
authors would be recovered.

FLUID EQUATIONS

We assume, but for purposes of space do not include, space and time dependence on
all fluid variables, i.e., p(x, t) = p, etc. All of the linear and non-linear results we will
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provide in this note derive from the same precursors that give rise to the acoustic equations
of motion, namely the fluid equations, first, Euler’s equation, which is a modified statement
of momentum conservation:

∂p

∂xj

= −ρ
(
∂vj

∂t
+ vi

∂vj

∂xi

)
, (1)

and the equation of continuity which is a statement of mass conservation:

∂ρ

∂t
+
∂(ρvj)

∂xj

= 0, (2)

where p is the pressure, ρ is the mass density, and vj is the vector fluid velocity.

ORDER

We distinguish the behaviour of the fluid medium over a likely wide range of scales and
magnitudes by expressing the variables p, ρ, and vi as expansions in orders of the parameter
ε:

p = p0 + εp1 + ε2p2 + ...,

vi = vi0 + εvi1 + ε2vi2 + ...,

ρ = ρ0 + ερ1 + ε2ρ2 + ... .

(3)

For convenience in the development to follow, we will generate these expansions through
a replacement rule. For instance, the pressure will be initially expressed as

p = p0 + εp1, (4)

which reproduces equation (3) to first order in ε, and is appropriate in distinguishing large
scale (i.e., hydrostatic and hydrodynamic) aspects of the variables (p0) from acoustic as-
pects (p1). Then, when we “look closer” at the fields, to discuss their non-linear activity,
we will replace p1 in equation (4) with

p1 → p1 + εp2, (5)

which reproduces equation (3) to second order in ε. This is as far as we will need to go in
our analysis, but evidently the replacement rule

pn → pn + εpn+1 (6)

applied sequentially will correctly reproduce the n + 1’th order term in equation (3). The
expansion in equations (4)–(6) is then repeated on ρ and vi. As in standard acoustics, the
key is that the same order parameter is used in the expansions of all three variables, hence
the product p1ρ1, for example, is considered to have an amplitude of the same order as p2.

CREWES Research Report — Volume 22 (2010) 3



Innanen

CONSTITUTIVE RELATIONS

To close the fluid equations requires a constitutive relation of the form

p = f(ρ). (7)

To discuss non-linear influences we need to extend beyond the linearizations typical of
acoustic theory. Using the order relations of the previous section, we have, initially,

p0 + εp1 = f (ρ0 + ερ1) . (8)

Expanding f about ρ0,

f(ρ0 + ερ1) = f(ρ0) + εf ′(ρ0)ρ1 + ε2
1

2
f ′′(ρ0)ρ

2
1 + ..., (9)

where the prime denotes the derivative with respect to ρ0, equation (8) becomes

p0 + εp1 = f(ρ0) + εf ′(ρ0)ρ1 + ε2
f ′′(ρ0)

2
ρ2

1 + ... . (10)

This has exposed a portion of the second order behaviour of p = f(ρ), through the term in
ρ2

1. However, because of our use of equation (4) and the framework of the previous section,
other second order and higher behaviour is embedded in p1 and ρ1. To account for this
explicitly, we replace ρ1 and p1 using equation (5), obtaining

p0 + εp1 + ε2p2

= f(ρ0) + εf ′(ρ0)ρ1 + ε2f ′(ρ0)ρ2 + ε2
f ′′(ρ0)

2
ρ2

1.
(11)

Since we have used a replacement rule, the variables with subscript 2 in fact contain second
order and all higher order behaviour. We will from now on assume that variables at third
order and higher in ε are negligible. Equating like orders, we obtain the relations

p0 = f(ρ0), (12)

p1 = f ′(ρ0)ρ1, (13)

and
p2 = f ′(ρ0)ρ2 +

1

2
f ′′(ρ0)ρ

2
1. (14)

From equation (12) we have that

f ′(ρ0) =
∂p0

∂ρ0

, (15)

and this, along with equation (13), provides the relation

ρ1 =

(
∂ρ0

∂p0

)
p1, (16)
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by which first order density variations are typically eliminated in deriving a linear wave
equation on the pressure. We now add to this a formula, derived from equations (12)–(15),
by which second order density variations may be likewise eliminated:

ρ2 =

(
∂ρ0

∂p0

)
p2 −

1

2

(
∂2p0

∂ρ2
0

)(
∂ρ0

∂p0

)3

p2
1. (17)

Defining

1

c21
≡
(
∂ρ0

∂p0

)
1

c22
≡ −1

2

(
∂2p0

∂ρ2
0

)(
∂ρ0

∂p0

)3

,

(18)

we can instead write more simply:

ρ1 =
1

c21
p1, (19)

and
ρ2 =

1

c21
p2 +

1

c22
p2

1. (20)

NON-LINEAR ACOUSTIC WAVE EQUATIONS

We begin to separate out acoustic motions from other motions of the fluid by substitut-
ing the forms in equations (3)–(5) into equations (1)–(2). From the continuity equation we
derive three relations, at zero’th, first, and second order:

∂ρ0

∂t
+

∂

∂xj

(ρ0vj0) = 0, (21)

∂ρ1

∂t
+

∂

∂xj

(ρ0vj1 + ρ1vj0) = 0, (22)

∂ρ2

∂t
+

∂

∂xj

(ρ0vj2 + ρ1vj1 + ρ2vj0) = 0, (23)

and likewise from Euler’s equation:

∂p0

∂xj

+ ρ0
∂vj0

∂t
+ ρ0vi0

∂vj0

∂xi

= 0, (24)

∂p1

∂xj

+ ρ0
∂vj1

∂t
+ ρ1

∂vj0

∂t
+ ρ0vi0

∂vj1

∂xi

+ ρ0vi1

∂vj0

∂xi

+ ρ1vi0

∂vj0

∂xi

= 0, (25)

and

∂p2

∂xj

+ ρ0
∂vj2

∂t
+ ρ1

∂vj1

∂t
+ ρ2

∂vj0

∂t
+ ρ0vi0

∂vj2

∂xi

+ ρ0vi1

∂vj1

∂xi

+ ρ0vi2

∂vj0

∂xi

+ ρ1vi0

∂vj1

∂xi

+ ρ1vi1

∂vj0

∂xi

+ ρ2vi0

∂vj0

∂xi

= 0.

(26)
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We next follow standard acoustic theory and set the hydrodynamic velocity vi0 = 0, i.e.,
neglect large scale flow of the fluid medium. This simplifies equations (21)–(26) consider-
ably, leaving

∂ρ0

∂t
= 0, (27)

∂ρ1

∂t
+

∂

∂xj

ρ0vj1 = 0, (28)

∂ρ2

∂t
+

∂

∂xj

(ρ0vj2 + ρ1vj1) = 0, (29)

∂p0

∂xj

= 0, (30)

∂p1

∂xj

+ ρ0
∂vj1

∂t
= 0, (31)

∂p2

∂xj

+ ρ0
∂vj2

∂t
+ ρ1

∂vj1

∂t
+ ρ0vi1

∂vj1

∂xi

= 0. (32)

Again following standard derivation procedure, we note that since equation (30) disallows
0th order pressure gradients, and since equation (16) links ρ0 and p0 explicitly, it must be
that ∂ρ0/∂xj = 0. This simplifies equation (28), just as it does in linear acoustics, and also,
now, equation (29). Together with equations (31)–(32), we then have

∂ρ1

∂t
+ ρ0

∂vj1

∂xj

= 0, (33)

∂ρ2

∂t
+ ρ0

∂vj2

∂xj

+
∂

∂xj

ρ1vj1 = 0. (34)

∂p1

∂xj

+ ρ0
∂vj1

∂t
= 0, (35)

∂p2

∂xj

+ ρ0
∂vj2

∂t
+ ρ1

∂vj1

∂t
+ ρ0vi1

∂vj1

∂xi

= 0. (36)

Next, we eliminate all 1st and 2nd order density variations in favour of pressure, using the
constitutive relations in equations (19) and (20), obtaining

1

c21

∂p1

∂t
+ ρ0

∂vj1

∂xj

= 0, (37)

∂p1

∂xj

+ ρ0
∂vj1

∂t
= 0, (38)

1

c21

∂p2

∂t
+

1

c22

∂p2
1

∂t
+ ρ0

∂vj2

∂xj

+
1

c21

∂

∂xj

p1vj1 = 0, (39)

∂p2

∂xj

+ ρ0
∂vj2

∂t
+

1

c21
p1
∂vj1

∂t
+ ρ0vi1

∂vj1

∂xi

= 0. (40)
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Equations (37)–(38) are the well-known basic linear acoustic equations, and equations
(39)–(40) are our non-linear additions. By forming

∂

∂xj

[equation 38]− ∂

∂t
[equation 37],

we eliminate velocity and produce an equation on first order variations in pressure p1, which
is, as expected, the wave equation:(

∂2

∂x2
j

− 1

c21

∂2

∂t2

)
p1 = 0. (41)

We may also eliminate second order velocity variations from the non-linear equations (39)–
(40) in favour of pressure. Forming

∂

∂xj

[equation 40]− ∂

∂t
[equation 39],

we obtain(
∂2

∂x2
j

− 1

c21

∂2

∂t2

)
p2 =

1

c22

∂2

∂t2
(p2

1) +
1

c21

∂

∂xj

(
∂p1

∂t
vj1

)
− ρ0

∂

∂xj

(
vi1

∂vj1

∂xi

)
. (42)

This may be further simplified by isolating the time derivative of p1 in equation (37) and
substituting it into the right-hand side:(

∂2

∂x2
j

− 1

c21

∂2

∂t2

)
p2 =

1

c22

∂2

∂t2
(p2

1)− ρ0
∂

∂xi

∂

∂xj

(vi1vj1) . (43)

This makes a relatively clean elimination of velocity possible, which we do by solving for
∂vi/∂t in equation (38) and integrating. This results in, finally,(

∂2

∂x2
j

− 1

c21

∂2

∂t2

)
p2 = S(p1), (44)

where

S(p1) ≡
1

c22

∂2

∂t2
(p2

1) +
∂

∂xi

∂

∂xj

(∫ t

−∞

∂p1

∂xi

dt

∫ t

−∞

∂p1

∂xj

dt

)
. (45)

DISCUSSION & CONCLUSIONS

Equations (41) & (44) are the coupled non-linear acoustic wave equations on the pres-
sure, with the former being recognizable as the linear wave equation, and the latter being
the non-linear addition. The second equation looks like a “normal,” linear wave equation
on p2, but with a time and space varying source function S that depends on the linear result
p1. This may be an intuitively useful expression if we wish to predict a second order wave
(p2) arising from the interaction of two first order waves (p1).
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Clearly the next step is to begin to study the nature and detail of solutions arising from
these equations. There are two qualitatively different types of result we will attempt to
produce. First, an examination of the kinematic behaviour of p2 may confirm or refute the
idea that wave components we would identify in our data as new events might be created
by nonlinear effects. Second, study of the amplitudes may provide order of magnitude
predictions of the relative importance of nonlinear v. linear seismology, possibly leading to
predictions regarding the likelihood of detecting these behaviours in a seismic record.
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